1
|
Tatarsky RL, Akbari N, Wang K, Xu C, Bass AH. Label-free multiphoton imaging reveals volumetric shifts across development in sensory-related brain regions of a miniature transparent vertebrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604134. [PMID: 39091824 PMCID: PMC11291088 DOI: 10.1101/2024.07.18.604134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Animals integrate information from different sensory modalities as they mature and perform increasingly complex behaviors. This may parallel differential investment in specific brain regions depending on the demands of changing sensory inputs. To investigate developmental changes in the volume of canonical sensory integration brain regions, we used third harmonic generation imaging for morphometric analysis of forebrain and midbrain regions from 5 to 90 days post fertilization (dpf) in Danionella dracula , a transparent, miniature teleost fish whose brain is optically accessible throughout its lifespan. Relative to whole brain volume, increased volume or investment in telencephalon, a higher order sensory integration center, and torus longitudinalis (TL), a midbrain visuomotor integration center, is relatively consistent from 5 to 30 dpf, until it increases at 60 dpf, followed by another increase at 90 dpf, as animals reach adulthood. In contrast, investment in midbrain optic tectum (TeO), a retinal-recipient target, progressively decreases from 30-90 dpf, whereas investment is relatively consistent across all stages for the midbrain torus semicircularis (TS), a secondary auditory and mechanosensory lateral line center, and the olfactory bulb (OB), a direct target of the olfactory epithelium. In sum, increased investment in higher order integration centers (telencephalon, TL) occurs as juveniles reach adulthood and exhibit more complex cognitive tasks, whereas investment in modality-dominant regions occurs in earlier stages (TeO) or is relatively consistent across development (TS, OB). Complete optical access throughout Danionella 's lifespan provides a unique opportunity to investigate how changing brain structure over development correlates with changes in connectivity, microcircuitry, or behavior.
Collapse
|
2
|
Merchant A, Zhou X. Caste-biased patterns of brain investment in the subterranean termite Reticulitermes flavipes. iScience 2024; 27:110052. [PMID: 38883809 PMCID: PMC11176635 DOI: 10.1016/j.isci.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/04/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Investment into neural tissue is expected to reflect the specific sensory and behavioral capabilities of a particular organism. Termites are eusocial insects that exhibit a caste system in which individuals can develop into one of several morphologically and behaviorally distinct castes. However, it is unclear to what extent these differences between castes are reflected in the anatomy of the brain. To address this question, we used deformation-based morphometry to conduct pairwise comparisons between the brains of different castes in the eastern subterranean termite, Reticulitermes flavipes. Workers exhibited enlargement in the antennal lobes and mushroom bodies, while reproductives showed increased investment into the optic lobes and central body. In addition, caste-specific enlargement was observed in regions that could not be mapped to distinct neuropils, most notably in soldiers. These findings demonstrate a significant influence of caste development on brain anatomy in termites alongside convergence with eusocial hymenopteran systems.
Collapse
Affiliation(s)
- Austin Merchant
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Goolsby BC, Smith EJ, Muratore IB, Coto ZN, Muscedere ML, Traniello JFA. Differential Neuroanatomical, Neurochemical, and Behavioral Impacts of Early-Age Isolation in a Eusocial Insect. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:171-183. [PMID: 38857586 DOI: 10.1159/000539546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Social experience early in life appears to be necessary for the development of species-typical behavior. Although isolation during critical periods of maturation has been shown to impact behavior by altering gene expression and brain development in invertebrates and vertebrates, workers of some ant species appear resilient to social deprivation and other neurobiological challenges that occur during senescence or due to loss of sensory input. It is unclear if and to what degree neuroanatomy, neurochemistry, and behavior will show deficiencies if social experience in the early adult life of worker ants is compromised. METHODS We reared newly eclosed adult workers of Camponotus floridanus under conditions of social isolation for 2-53 days, quantified brain compartment volumes, recorded biogenic amine levels in individual brains, and evaluated movement and behavioral performance to compare the neuroanatomy, neurochemistry, brood-care behavior, and foraging (predatory behavior) of isolated workers with that of workers experiencing natural social contact after adult eclosion. RESULTS We found that the volume of the antennal lobe, which processes olfactory inputs, was significantly reduced in workers isolated for an average of 40 days, whereas the size of the mushroom bodies, centers of higher-order sensory processing, increased after eclosion and was not significantly different from controls. Titers of the neuromodulators serotonin, dopamine, and octopamine remained stable and were not significantly different in isolation treatments and controls. Brood care, predation, and overall movement were reduced in workers lacking social contact early in life. CONCLUSION These results suggest that the behavioral development of isolated workers of C. floridanus is specifically impacted by a reduction in the size of the antennal lobe. Task performance and locomotor ability therefore appear to be sensitive to a loss of social contact through a reduction of olfactory processing ability rather than change in the size of the mushroom bodies, which serve important functions in learning and memory, or the central complex, which controls movement.
Collapse
Affiliation(s)
- Billie C Goolsby
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Department of Biology, Stanford University, Stanford, California, USA
| | - E Jordan Smith
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Isabella B Muratore
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Chemistry Department, United States Naval Academy, Annapolis, Maryland, USA
| | - Zach N Coto
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Mario L Muscedere
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Goolsby BC, Smith EJ, Muratore IB, Coto ZN, Muscedere ML, Traniello JFA. Differential Neuroanatomical, Neurochemical, and Behavioral Impacts of Early-Age Isolation in a Eusocial Insect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546928. [PMID: 37425857 PMCID: PMC10326991 DOI: 10.1101/2023.06.29.546928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Social experience early in life appears to be necessary for the development of species-typical behavior. Although isolation during critical periods of maturation has been shown to impact behavior by altering gene expression and brain development in invertebrates and vertebrates, workers of some ant species appear resilient to social deprivation and other neurobiological challenges that occur during senescence or due to loss of sensory input. It is unclear if and to what degree neuroanatomy, neurochemistry, and behavior will show deficiencies if social experience in the early adult life of worker ants is compromised. We reared newly-eclosed adult workers of Camponotus floridanus under conditions of social isolation for 2 to 53 days, quantified brain compartment volumes, recorded biogenic amine levels in individual brains, and evaluated movement and behavioral performance to compare the neuroanatomy, neurochemistry, brood-care behavior, and foraging (predatory behavior) of isolated workers with that of workers experiencing natural social contact after adult eclosion. We found that the volume of the antennal lobe, which processes olfactory inputs, was significantly reduced in workers isolated for an average of 40 days, whereas the size of the mushroom bodies, centers of higher-order sensory processing, increased after eclosion and was not significantly different from controls. Titers of the neuromodulators serotonin, dopamine, and octopamine remained stable and were not significantly different in isolation treatments and controls. Brood care, predation, and overall movement were reduced in workers lacking social contact early in life. These results suggest that the behavioral development of isolated workers of C. floridanus is specifically impacted by a reduction in the size of the antennal lobe. Task performance and locomotor ability therefore appear to be sensitive to a loss of social contact through a reduction of olfactory processing ability rather than change in the size of the mushroom bodies, which serve important functions in learning and memory, or the central complex, which controls movement.
Collapse
Affiliation(s)
- Billie C. Goolsby
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - E. Jordan Smith
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Isabella B. Muratore
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Department of Biological Sciences, New Jersey Institute of Technology, NJ, 07102, USA
| | - Zach N. Coto
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | | | |
Collapse
|
5
|
Aibekova L, Keller RA, Katzke J, Allman DM, Hita-Garcia F, Labonte D, Narendra A, Economo EP. Parallel And Divergent Morphological Adaptations Underlying The Evolution of Jumping Ability in Ants. Integr Org Biol 2023; 5:obad026. [PMID: 37545740 PMCID: PMC10401624 DOI: 10.1093/iob/obad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Jumping is a rapid locomotory mode widespread in terrestrial organisms. However, it is a rare specialization in ants. Forward jumping has been reported within four distantly related ant genera: Gigantiops, Harpegnathos, Myrmecia, and Odontomachus. The temporal engagement of legs/body parts during jump, however, varies across these genera. It is unknown what morphological adaptations underlie such behaviors and whether jumping in ants is solely driven directly by muscle contraction or additionally relies on elastic recoil mechanism. We investigated the morphological adaptations for jumping behavior by comparing differences in the locomotory musculature between jumping and non-jumping relatives using X-ray micro-CT and 3D morphometrics. We found that the size-specific volumes of the trochanter depressor muscle (scm6) of the middle and hind legs are 3-5 times larger in jumping ants, and that one coxal remotor muscle (scm2) is reduced in volume in the middle and/or hind legs. Notably, the enlargement in the volume of other muscle groups is directly linked to the legs or body parts engaged during the jump. Furthermore, a direct comparison of the muscle architecture revealed two significant differences between jumping vs. non-jumping ants: First, the relative Physiological Cross-Sectional Area (PCSA) of the trochanter depressor muscles of all three legs were larger in jumping ants, except in the front legs of Odontomachus rixosus and Myrmecia nigrocincta; second, the relative muscle fiber length was shorter in jumping ants compared to non-jumping counterparts, except in the front legs of O. rixosus and M. nigrocincta. These results suggest that the difference in relative muscle volume in jumping ants is largely invested in the area (PCSA), and not in fiber length. There was no clear difference in the pennation angle between jumping and non-jumping ants. Additionally, we report that the hind leg length relative to body length was longer in jumping ants. Based on direct comparison of the observed vs. possible work and power output during jumps, we surmise that direct muscle contractions suffice to explain jumping performance in three species, except for O. rixosus, where the lack of data on jumping performance prevents us from drawing definitive conclusions for this particular species. We suggest that increased investment in jumping-relevant musculature is a primary morphological adaptation that separates jumping from non-jumping ants. These results elucidate the common and idiosyncratic morphological changes underlying this rare adaptation in ants. まとぅみ (Okinawan language-Uchinaaguchi) (Japanese) РЕЗЮМЕ (Kazakh) ZUSAMMENFASSUNG (German).
Collapse
Affiliation(s)
| | - R A Keller
- Museu Nacional de Historia Natural e da Ciência & Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Universidade de Lisboa, Lisbon, Portugal
| | - J Katzke
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - D M Allman
- Ecological Neuroscience Group, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - F Hita-Garcia
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - D Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - A Narendra
- Ecological Neuroscience Group, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - E P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
6
|
Kamhi JF, Lihoreau M, Arganda S. Editorial: Neuroethology of the colonial mind: Ecological and evolutionary context of social brains. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1058611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
AnimalTraits - a curated animal trait database for body mass, metabolic rate and brain size. Sci Data 2022; 9:265. [PMID: 35654905 PMCID: PMC9163144 DOI: 10.1038/s41597-022-01364-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Trait databases have become important resources for large-scale comparative studies in ecology and evolution. Here we introduce the AnimalTraits database, a curated database of body mass, metabolic rate and brain size, in standardised units, for terrestrial animals. The database has broad taxonomic breadth, including tetrapods, arthropods, molluscs and annelids from almost 2000 species and 1000 genera. All data recorded in the database are sourced from their original empirical publication, and the original metrics and measurements are included with each record. This allows for subsequent data transformations as required. We have included rich metadata to allow users to filter the dataset. The additional R scripts we provide will assist researchers with aggregating standardised observations into species-level trait values. Our goals are to provide this resource without restrictions, to keep the AnimalTraits database current, and to grow the number of relevant traits in the future. Measurement(s) | metabolic rate quantification • body mass • brain size | Technology Type(s) | metabolic rate measurement • body mass quantification • brain mass brain volume |
Collapse
|
8
|
Jaumann S, Rehan SM, Schwartz K, Smith AR. Reduced neural investment in post-reproductive females of the bee Ceratina calcarta. Sci Rep 2022; 12:8256. [PMID: 35585164 PMCID: PMC9117229 DOI: 10.1038/s41598-022-12281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
Many insects show plasticity in the area of the brain called the mushroom bodies (MB) with foraging and social experience. MBs are paired neuropils associated with learning and memory. MB volume is typically greater in mature foragers relative to young and/or inexperienced individuals. Long-term studies show that extended experience may further increase MB volume, but long-term studies have only been performed on non-reproductive social insect workers. Here we use the subsocial bee Ceratina calcarata to test the effect of extended foraging experience on MB volume among reproductive females. Ceratina calcarata females forage to provision their immature offspring in the spring, and then again to provision their adult daughters in the late summer. We measured the volume of the MB calyces and peduncle, antennal lobes (AL), optic lobes (OL), central complex (CX), and whole brains of three groups of bees: newly emerged females, reproductive females in spring (foundresses), and post-reproductive mothers feeding their adult daughters in late summer. Post-reproductive late summer mothers had smaller MB calyces and ALs than foundresses. Moreover, among late mothers (but not other bees), wing wear, which is a measure of foraging experience, negatively correlated with both MB and OL volume. This is contrary to previously studied non-reproductive social insect workers in which foraging experience correlates postiviely with MB volume, and suggests that post-reproductive bees may reduce neural investment near the end of their lives.
Collapse
Affiliation(s)
- Sarah Jaumann
- Department of Biological Sciences, George Washington University, 800 22nd St. NW, Washington, DC, 20052, USA
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON, Canada
| | - Kayla Schwartz
- Department of Biological Sciences, George Washington University, 800 22nd St. NW, Washington, DC, 20052, USA
| | - Adam R Smith
- Department of Biological Sciences, George Washington University, 800 22nd St. NW, Washington, DC, 20052, USA.
| |
Collapse
|
9
|
Nocturnal Myrmecia ants have faster temporal resolution at low light levels but lower adaptability compared to diurnal relatives. iScience 2022; 25:104134. [PMID: 35402879 PMCID: PMC8991095 DOI: 10.1016/j.isci.2022.104134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Nocturnal insects likely have evolved distinct physiological adaptations to enhance sensitivity for tasks, such as catching moving prey, where the signal-noise ratio of visual information is typically low. Using electroretinogram recordings, we measured the impulse response and the flicker fusion frequency (FFF) in six congeneric species of Myrmecia ants with different diurnal rhythms. The FFF, which measures the ability of an eye to respond to a flickering light, is significantly lower in nocturnal ants (∼125 Hz) compared to diurnal ants (∼189 Hz). However, the nocturnal ants have faster eyes at very low light intensities than the diurnal species. During the day, nocturnal ants had slower impulse responses than their diurnal counterparts. However, at night, both latency and duration significantly shortened in nocturnal species. The characteristics of the impulse responses varied substantially across all six species and did not correlate well with the measured flicker fusion frequency. Flicker fusion frequency is lower in nocturnal ants compared to diurnal ants Latency and duration of the impulse response shorten at night in nocturnal ants In ants, the FFF is not predicted by the measured impulse response characteristics
Collapse
|
10
|
Arganda S, Arganda-Carreras I, Gordon DG, Hoadley AP, Pérez-Escudero A, Giurfa M, Traniello JFA. Statistical Atlases and Automatic Labeling Strategies to Accelerate the Analysis of Social Insect Brain Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.745707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current methods used to quantify brain size and compartmental scaling relationships in studies of social insect brain evolution involve manual annotations of images from histological samples, confocal microscopy or other sources. This process is susceptible to human bias and error and requires time-consuming effort by expert annotators. Standardized brain atlases, constructed through 3D registration and automatic segmentation, surmount these issues while increasing throughput to robustly sample diverse morphological and behavioral phenotypes. Here we design and evaluate three strategies to construct statistical brain atlases, or templates, using ants as a model taxon. The first technique creates a template by registering multiple brains of the same species. Brain regions are manually annotated on the template, and the labels are transformed back to each individual brain to obtain an automatic annotation, or to any other brain aligned with the template. The second strategy also creates a template from multiple brain images but obtains labels as a consensus from multiple manual annotations of individual brains comprising the template. The third technique is based on a template comprising brains from multiple species and the consensus of their labels. We used volume similarity as a metric to evaluate the automatic segmentation produced by each method against the inter- and intra-individual variability of human expert annotators. We found that automatic and manual methods are equivalent in volume accuracy, making the template technique an extraordinary tool to accelerate data collection and reduce human bias in the study of the evolutionary neurobiology of ants and other insects.
Collapse
|
11
|
Gandia KM, Cappa F, Baracchi D, Hauber ME, Beani L, Uy FMK. Caste, Sex, and Parasitism Influence Brain Plasticity in a Social Wasp. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.803437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain plasticity is widespread in nature, as it enables adaptive responses to sensory demands associated with novel stimuli, environmental changes and social conditions. Social Hymenoptera are particularly well-suited to study neuroplasticity, because the division of labor amongst females and the different life histories of males and females are associated with specific sensory needs. Here, we take advantage of the social wasp Polistes dominula to explore if brain plasticity is influenced by caste and sex, and the exploitation by the strepsipteran parasite Xenos vesparum. Within sexes, male wasps had proportionally larger optic lobes, while females had larger antennal lobes, which is consistent with the sensory needs of sex-specific life histories. Within castes, reproductive females had larger mushroom body calyces, as predicted by their sensory needs for extensive within-colony interactions and winter aggregations, than workers who frequently forage for nest material and prey. Parasites had different effects on female and male hosts. Contrary to our predictions, female workers were castrated and behaviorally manipulated by female or male parasites, but only showed moderate differences in brain tissue allocation compared to non-parasitized workers. Parasitized males maintained their reproductive apparatus and sexual behavior. However, they had smaller brains and larger sensory brain regions than non-parasitized males. Our findings confirm that caste and sex mediate brain plasticity in P. dominula, and that parasitic manipulation drives differential allocation of brain regions depending on host sex.
Collapse
|
12
|
Penmetcha B, Ogawa Y, Ryan LA, Hart NS, Narendra A. Ocellar spatial vision in Myrmecia ants. J Exp Biol 2021; 224:272224. [PMID: 34542631 DOI: 10.1242/jeb.242948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
In addition to compound eyes, insects possess simple eyes known as ocelli. Input from the ocelli modulates optomotor responses, flight-time initiation, and phototactic responses - behaviours that are mediated predominantly by the compound eyes. In this study, using pattern electroretinography (pERG), we investigated the contribution of the compound eyes to ocellar spatial vision in the diurnal Australian bull ant Myrmecia tarsata by measuring the contrast sensitivity and spatial resolving power of the ocellar second-order neurons under various occlusion conditions. Furthermore, in four species of Myrmecia ants active at different times of the day, and in European honeybee Apis mellifera, we characterized the ocellar visual properties when both visual systems were available. Among the ants, we found that the time of activity had no significant effect on ocellar spatial vision. Comparing day-active ants and the honeybee, we did not find any significant effect of locomotion on ocellar spatial vision. In M. tarsata, when the compound eyes were occluded, the amplitude of the pERG signal from the ocelli was reduced 3 times compared with conditions when the compound eyes were available. The signal from the compound eyes maintained the maximum contrast sensitivity of the ocelli as 13 (7.7%), and the spatial resolving power as 0.29 cycles deg-1. We conclude that ocellar spatial vison improves significantly with input from the compound eyes, with a noticeably larger improvement in contrast sensitivity than in spatial resolving power.
Collapse
Affiliation(s)
- Bhavana Penmetcha
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuri Ogawa
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Laura A Ryan
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
13
|
Rozanski AN, Cini A, Lopreto TE, Gandia KM, Hauber ME, Cervo R, Uy FMK. Differential investment in visual and olfactory brain regions is linked to the sensory needs of a wasp social parasite and its host. J Comp Neurol 2021; 530:756-767. [PMID: 34473851 DOI: 10.1002/cne.25242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 01/30/2023]
Abstract
Obligate insect social parasites evolve traits to effectively locate and then exploit their hosts, whereas hosts have complex social behavioral repertoires, which include sensory recognition to reject potential conspecific intruders and heterospecific parasites. While social parasites and host behaviors have been studied extensively, less is known about how their sensory systems function to meet their specific selective pressures. Here, we compare investment in visual and olfactory brain regions in the paper wasp Polistes dominula, and its obligate social parasite P. sulcifer, to explore the links among sensory systems,brain and behavior. Our results show significant relative volumetric differences between these two closely related species, consistent with their very different life histories. Social parasites show proportionally larger optic lobes and central complex to likely navigate long-distance migrations and unfamiliar landscapes to locate the specific species of hosts they usurp. Contrastingly, hosts have larger antennal lobes and calyces of the mushroom bodies compared with social parasites, as predicted by their sensory means to maintain social cohesion via olfactory signals, allocate colony tasks, forage, and recognize conspecific and heterospecific intruders. Our work suggests how this tradeoff between visual and olfactory brain regions may facilitate different sensory adaptations needed to perform social and foraging tasks by the host, including recognition of parasites, or to fly long distances and successful host localizing by the social parasite.
Collapse
Affiliation(s)
| | - Alessandro Cini
- Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy.,Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Taylor E Lopreto
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Kristine M Gandia
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Mark E Hauber
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rita Cervo
- Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Floria M K Uy
- Department of Biology, University of Miami, Coral Gables, Florida, USA.,Department of Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
14
|
Neuroanatomical differentiation associated with alternative reproductive tactics in male arid land bees, Centris pallida and Amegilla dawsoni. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:497-504. [PMID: 34091709 DOI: 10.1007/s00359-021-01492-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022]
Abstract
Alternative reproductive tactics (ARTs) occur when there is categorical variation in the reproductive strategies of a sex within a population. These different behavioral phenotypes can expose animals to distinct cognitive challenges, which may be addressed through neuroanatomical differentiation. The dramatic phenotypic plasticity underlying ARTs provides a powerful opportunity to study how intraspecific nervous system variation can support distinct cognitive abilities. We hypothesized that conspecific animals pursuing ARTs would exhibit dissimilar brain architecture. Dimorphic males of the bee species Centris pallida and Amegilla dawsoni use alternative mate location strategies that rely primarily on either olfaction (large-morph) or vision (small-morph) to find females. This variation in behavior led us to predict increased volumes of the brain regions supporting their primarily chemosensory or visual mate location strategies. Large-morph males relying mainly on olfaction had relatively larger antennal lobes and relatively smaller optic lobes than small-morph males relying primarily on visual cues. In both species, as relative volumes of the optic lobe increased, the relative volume of the antennal lobe decreased. In addition, A. dawsoni large males had relatively larger mushroom body lips, which process olfactory inputs. Our results suggest that the divergent behavioral strategies in ART systems can be associated with neuroanatomical differentiation.
Collapse
|
15
|
A Review of Effects of Environment on Brain Size in Insects. INSECTS 2021; 12:insects12050461. [PMID: 34067515 PMCID: PMC8156428 DOI: 10.3390/insects12050461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary What makes a big brain is fascinating since it is considered as a measure of intelligence. Above all, brain size is associated with body size. If species that have evolved with complex social behaviours possess relatively bigger brains than those deprived of such behaviours, this does not constitute the only factor affecting brain size. Other factors such as individual experience or surrounding environment also play roles in the size of the brain. In this review, I summarize the recent findings about the effects of environment on brain size in insects. I also discuss evidence about how the environment has an impact on sensory systems and influences brain size. Abstract Brain size fascinates society as well as researchers since it is a measure often associated with intelligence and was used to define species with high “intellectual capabilities”. In general, brain size is correlated with body size. However, there are disparities in terms of relative brain size between species that may be explained by several factors such as the complexity of social behaviour, the ‘social brain hypothesis’, or learning and memory capabilities. These disparities are used to classify species according to an ‘encephalization quotient’. However, environment also has an important role on the development and evolution of brain size. In this review, I summarise the recent studies looking at the effects of environment on brain size in insects, and introduce the idea that the role of environment might be mediated through the relationship between olfaction and vision. I also discussed this idea with studies that contradict this way of thinking.
Collapse
|
16
|
Jernigan CM, Zaba NC, Sheehan MJ. Age and social experience induced plasticity across brain regions of the paper wasp Polistes fuscatus. Biol Lett 2021; 17:20210073. [PMID: 33849349 PMCID: PMC8086938 DOI: 10.1098/rsbl.2021.0073] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Developmental studies of brain volumes can reveal which portions of neural circuits are sensitive to environmental inputs. In social insects, differences in relative investment across brain regions emerge as behavioural repertoires change during ontogeny or as a result of experience. Here, we test the effects of maturation and social experience on morphological brain development in Polistes fuscatus paper wasps, focusing on brain regions involved in visual and olfactory processing. We find that mature wasps regardless of social experience have relatively larger brains than newly emerged wasps and this difference is driven by changes to mushroom body calyx and visual regions but not olfactory processing neuropils. Notably, social wasps invest more in the anterior optic tubercle (AOT), a visual glomerulus involved in colour and object processing in other taxa, relative to other visual integration centres the mushroom body calyces compared with aged socially naive wasps. Differences in developmental plasticity between visual and olfactory neuropil volumes are discussed in light of behavioural maturation in paper wasps, especially as it relates to social recognition. Previous research has shown that P. fuscatus need social experience to develop specialized visual processing of faces, which is used to individually recognize conspecifics. The present study suggests that the AOT is a candidate brain region that could mediate facial processing in this species.
Collapse
Affiliation(s)
| | - Natalie C. Zaba
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| | - Michael J. Sheehan
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Bouchebti S, Arganda S. Insect lifestyle and evolution of brain morphology. CURRENT OPINION IN INSECT SCIENCE 2020; 42:90-96. [PMID: 33038535 DOI: 10.1016/j.cois.2020.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Insect lifestyles are extremely diversified and have important consequences for brain function. Lifestyle determines the resources and information that brains might access and also those that are required to produce adaptive behaviors. Most of the observed adaptations in brain morphology to variation in lifestyle are related to the first stages of sensory information processing (e.g. adaptations to diel habits). However, morphological signatures of lifestyles related to higher order processing of information are more difficult to demonstrate. Co-option of existing neural structures for new behaviors might hinder the detection of morphological changes at a large scale. Current methodological advances will make it possible to investigate finer structural changes (e.g. variation in the connectivity between neurons) and might shed light on whether or not some lifestyles (e.g. eusociality) require morphological adaptations.
Collapse
Affiliation(s)
- Sofia Bouchebti
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Sara Arganda
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain.
| |
Collapse
|
18
|
Clifton GT, Holway D, Gravish N. Vision does not impact walking performance in Argentine ants. ACTA ACUST UNITED AC 2020; 223:223/20/jeb228460. [PMID: 33067354 DOI: 10.1242/jeb.228460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022]
Abstract
Many walking insects use vision for long-distance navigation, but the influence of vision on rapid walking performance that requires close-range obstacle detection and directing the limbs towards stable footholds remains largely untested. We compared Argentine ant (Linepithema humile) workers in light versus darkness while traversing flat and uneven terrain. In darkness, ants reduced flat-ground walking speeds by only 5%. Similarly, the approach speed and time to cross a step obstacle were not significantly affected by lack of lighting. To determine whether tactile sensing might compensate for vision loss, we tracked antennal motion and observed shifts in spatiotemporal activity as a result of terrain structure but not illumination. Together, these findings suggest that vision does not impact walking performance in Argentine ant workers. Our results help contextualize eye variation across ants, including subterranean, nocturnal and eyeless species that walk in complete darkness. More broadly, our findings highlight the importance of integrating vision, proprioception and tactile sensing for robust locomotion in unstructured environments.
Collapse
Affiliation(s)
- Glenna T Clifton
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA .,Department of Biology, University of Portland, Portland, OR 97203, USA
| | - David Holway
- Division of Biological Science, Section of Ecology, Behavior and Evolution, University of California, San Diego , La Jolla, CA 92093, USA
| | - Nicholas Gravish
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Kamhi JF, Barron AB, Narendra A. Vertical Lobes of the Mushroom Bodies Are Essential for View-Based Navigation in Australian Myrmecia Ants. Curr Biol 2020; 30:3432-3437.e3. [DOI: 10.1016/j.cub.2020.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 10/23/2022]
|
20
|
Reis M, Wiegleb G, Claude J, Lata R, Horchler B, Ha NT, Reimer C, Vieira CP, Vieira J, Posnien N. Multiple loci linked to inversions are associated with eye size variation in species of the Drosophila virilis phylad. Sci Rep 2020; 10:12832. [PMID: 32732947 PMCID: PMC7393161 DOI: 10.1038/s41598-020-69719-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022] Open
Abstract
The size and shape of organs is tightly controlled to achieve optimal function. Natural morphological variations often represent functional adaptations to an ever-changing environment. For instance, variation in head morphology is pervasive in insects and the underlying molecular basis is starting to be revealed in the Drosophila genus for species of the melanogaster group. However, it remains unclear whether similar diversifications are governed by similar or different molecular mechanisms over longer timescales. To address this issue, we used species of the virilis phylad because they have been diverging from D. melanogaster for at least 40 million years. Our comprehensive morphological survey revealed remarkable differences in eye size and head shape among these species with D. novamexicana having the smallest eyes and southern D. americana populations having the largest eyes. We show that the genetic architecture underlying eye size variation is complex with multiple associated genetic variants located on most chromosomes. Our genome wide association study (GWAS) strongly suggests that some of the putative causative variants are associated with the presence of inversions. Indeed, northern populations of D. americana share derived inversions with D. novamexicana and they show smaller eyes compared to southern ones. Intriguingly, we observed a significant enrichment of genes involved in eye development on the 4th chromosome after intersecting chromosomal regions associated with phenotypic differences with those showing high differentiation among D. americana populations. We propose that variants associated with chromosomal inversions contribute to both intra- and interspecific variation in eye size among species of the virilis phylad.
Collapse
Affiliation(s)
- Micael Reis
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Gordon Wiegleb
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,International Max Planck Research School for Genome Science, Am Fassberg 11, 37077, Göttingen, Germany
| | - Julien Claude
- Institut Des Sciences de l'Evolution de Montpellier, CNRS/UM2/IRD, 2 Place Eugène Bataillon, cc64, 34095, Montpellier Cedex 5, France
| | - Rodrigo Lata
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Britta Horchler
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ngoc-Thuy Ha
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Christian Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
21
|
Arganda S, Hoadley AP, Razdan ES, Muratore IB, Traniello JFA. The neuroplasticity of division of labor: worker polymorphism, compound eye structure and brain organization in the leafcutter ant Atta cephalotes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:651-662. [PMID: 32506318 DOI: 10.1007/s00359-020-01423-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
Our understanding of how sensory structure design is coupled with neural processing capacity to adaptively support division of labor is limited. Workers of the remarkably polymorphic fungus-growing ant Atta cephalotes are behaviorally specialized by size: the smallest workers (minims) tend fungi in dark subterranean chambers while larger workers perform tasks outside the nest. Strong differences in worksite light conditions are predicted to influence sensory and processing requirements for vision. Analyzing confocal scans of worker eyes and brains, we found that eye structure and visual neuropils appear to have been selected to maximize task performance according to light availability. Minim eyes had few ommatidia, large interommatidial angles and eye parameter values, suggesting selection for visual sensitivity over acuity. Large workers had larger eyes with disproportionally more and larger ommatidia, and smaller interommatidial angles and eye parameter values, indicating peripheral sensory adaptation to ambient rainforest light. Optic lobes and mushroom body collars were disproportionately small in minims. Within the optic lobe, lamina and lobula relative volumes increased with worker size whereas medulla volume decreased. Visual system phenotypes thus correspond to task specializations in dark or light environments and illustrate a functional neuroplasticity underpinning division of labor in this socially complex agricultural ant.
Collapse
Affiliation(s)
- Sara Arganda
- Department of Biology, Boston University, Boston, USA.
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062, Toulouse, France.
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain.
| | | | - Evan S Razdan
- Department of Biology, Boston University, Boston, USA
| | | | - James F A Traniello
- Department of Biology, Boston University, Boston, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
22
|
Özer I, Carle T. Back to the light, coevolution between vision and olfaction in the "Dark-flies" (Drosophila melanogaster). PLoS One 2020; 15:e0228939. [PMID: 32045466 PMCID: PMC7012446 DOI: 10.1371/journal.pone.0228939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022] Open
Abstract
Trade-off between vision and olfaction, the fact that investment in one correlates with decreased investment in the other, has been demonstrated by a wealth of comparative studies. However, there is still no empirical evidence suggesting how these two sensory systems coevolve, i.e. simultaneously or alternatively. The "Dark-flies" (Drosophila melanogaster) constitute a unique model to investigate such relation since they have been reared in the dark since 1954, approximately 60 years (~1500 generations). To observe how vision and olfaction evolve, populations of Dark-flies were reared in normal lighting conditions for 1 (DF1G) and 65 (DF65G) generations. We measured the sizes of the visual (optic lobes, OLs) and olfactory (antennal lobes, ALs) primary centres, as well as the rest of the brain, and compared the results with the original and its genetically most similar strain (Oregon flies). We found that, whereas the ALs decreased in size, the OLs (together with the brain) increased in size in the Dark-flies returned back to the light, both in the DF1G and DF65G. These results experimentally show that trade-off between vision and olfaction occurs simultaneously, and suggests that there are possible genetic and epigenetic processes regulating the size of both optic and antennal lobes. Furthermore, although the Dark-flies were able to mate and survive in the dark with a reduced neural investment, individuals being returned to the light seem to have been selected with reinvestment in visual capabilities despite a potential higher energetic cost.
Collapse
Affiliation(s)
- Ismet Özer
- Institute of Neuroscience, Framlington place, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas Carle
- Institute of Neuroscience, Framlington place, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Guillet A, Stergiou A, Carle T. Effect of Light Exposure upon Food Consumption and Brain Size in Dark-Flies (Drosophila melanogaster). BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:18-26. [PMID: 31770768 DOI: 10.1159/000504121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 11/19/2022]
Abstract
While reducing the investment in the visual system of nocturnal/cave-dwelling species appears to be an evolutionarily stable strategy in response to the difficulty of locating food in the dark, relying on visual information for diurnal species is crucial for their survival and reproduction. However, the manner in which species evolve and adapt to the energetic demands placed upon them by environmental changes is not perfectly understood. In particular, if life in the dark is associated with a reduction in energetic demand, would relocation to a well-lit environment increase energetic demand? This question has a bearing upon our understanding of factors that influence the ability of species to adapt to new habitats. After observing that a sub-population of "Dark-flies" (i.e., fruit flies bred in the dark for more than 60 years) has been selected with a larger visual system (optic lobes) and brain over the course of being maintained in normal lighting conditions for 3 years (DFLight), we used the CAFÉ assay method to investigate the differences in the two strains' energetic demands in the present study. We therefore measured brain size, body size, and food consumption in Dark-flies, DFLight, and Oregon flies (i.e., the fly species most genetically similar to Dark-flies). We found that the DFLight consumed more food solution than the Dark-flies, which correlates with that strain's larger brain size and improved visual capability compared to the Dark-flies. In addition, and although the -Oregon flies initially consumed less food solution than the DFLight, the amount consumed by these two strains by the end of the CAFÉ assay was approximately the same. This suggests that the Dark-flies have adapted their metabolism or feeding strategies in response to a dark environment. Our investigation therefore provides empirical evidence elucidating the manner in which energetic demands change in response to environmental changes and the cross-generational effect upon sensory-system investment.
Collapse
Affiliation(s)
- Alban Guillet
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antonia Stergiou
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas Carle
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan, .,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom,
| |
Collapse
|
24
|
Kamhi JF, Ilieş I, Traniello JFA. Social Complexity and Brain Evolution: Comparative Analysis of Modularity and Integration in Ant Brain Organization. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:4-18. [PMID: 30982030 DOI: 10.1159/000497267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/27/2019] [Indexed: 11/19/2022]
Abstract
The behavioral demands of living in social groups have been linked to the evolution of brain size and structure, but how social organization shapes investment and connectivity within and among functionally specialized brain regions remains unclear. To understand the influence of sociality on brain evolution in ants, a premier clade of eusocial insects, we statistically analyzed patterns of brain region size covariation as a proxy for brain region connectivity. We investigated brain structure covariance in young and old workers of two formicine ants, the Australasian weaver ant Oecophylla smaragdina, a pinnacle of social complexity in insects, and its socially basic sister clade Formica subsericea. As previously identified in other ant species, we predicted that our analysis would recognize in both species an olfaction-related brain module underpinning social information processing in the brain, and a second neuroanatomical cluster involved in nonolfactory sensorimotor processes, thus reflecting conservation of compartmental connectivity. Furthermore, we hypothesized that covariance patterns would reflect divergence in social organization and life histories either within this species pair or compared to other ant species. Contrary to our predictions, our covariance analyses revealed a weakly defined visual, rather than olfactory, sensory processing cluster in both species. This pattern may be linked to the reliance on vision for worker behavioral performance outside of the nest and the correlated expansion of the optic lobes to meet navigational demands in both species. Additionally, we found that colony size and social organization, key measures of social complexity, were only weakly correlated with brain modularity in these formicine ants. Worker age also contributed to variance in brain organization, though in different ways in each species. These findings suggest that brain organization may be shaped by the divergent life histories of the two study species. We compare our findings with patterns of brain organization of other eusocial insects.
Collapse
Affiliation(s)
- J Frances Kamhi
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA, .,Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia,
| | - Iulian Ilieş
- Healthcare Systems Engineering Institute, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| | - James F A Traniello
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA.,Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Ogawa Y, Ryan LA, Palavalli-Nettimi R, Seeger O, Hart NS, Narendra A. Spatial Resolving Power and Contrast Sensitivity Are Adapted for Ambient Light Conditions in Australian Myrmecia Ants. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|