2
|
Alrumayyan N, Slauenwhite D, McAlpine SM, Roberts S, Issekutz TB, Huber AM, Liu Z, Derfalvi B. Prolidase deficiency, a rare inborn error of immunity, clinical phenotypes, immunological features, and proposed treatments in twins. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:17. [PMID: 35197125 PMCID: PMC8867623 DOI: 10.1186/s13223-022-00658-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022]
Abstract
Background Prolidase deficiency (PD) is an autosomal recessive inborn multisystemic disease caused by mutations in the PEPD gene encoding the enzyme prolidase D, leading to defects in turnover of proline-containing proteins, such as collagen. PD is categorized as a metabolic disease, but also as an inborn error of immunity. PD presents with a range of findings including dysmorphic features, intellectual disabilities, recurrent infections, intractable skin ulceration, autoimmunity, and splenomegaly. Despite symptoms of immune dysregulation, only very limited immunologic assessments have been reported and standard therapies for PD have not been described. We report twin females with PD, including comprehensive immunologic profiles and treatment modalities used. Case presentation Patient 1 had recurrent infections in childhood. At age 13, she presented with telangiectasia, followed by painful, refractory skin ulcerations on her lower limbs, where skin biopsy excluded vasculitis. She had typical dysmorphic features of PD. Next-generation sequencing revealed pathogenic compound heterozygous mutations (premature stop codons) in the PEPD gene. Patient 2 had the same mutations, typical PD facial features, atopy, and telangiectasias, but no skin ulceration. Both patients had imidodipeptiduria. Lymphocyte subset analysis revealed low-normal frequency of Treg cells and decreased frequency of expression of the checkpoint molecule CTLA-4 in CD4+ TEM cells. Analysis of Th1, Th2, and Th17 profiles revealed increased inflammatory IL-17+ CD8+ TEM cells in both patients and overexpression of the activation marker HLA-DR on CD4+ TEM cells, reflecting a highly activated proinflammatory state. Neither PD patient had specific antibody deficiencies despite low CD4+CXCR5+ Tfh cells and low class-switched memory B cells. Plasma IL-18 levels were exceptionally high. Conclusions Immunologic abnormalities including skewed frequencies of activated inflammatory CD4+ and CD8+ TEM cells, decreased CTLA-4 expression, and defects in memory B cells may be a feature of immune dysregulation associated with PD; however, a larger sample size is required to validate these findings. The high IL-18 plasma levels suggest underlying autoinflammatory processes.
Collapse
Affiliation(s)
- Nora Alrumayyan
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Drew Slauenwhite
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Sarah M McAlpine
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Sarah Roberts
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Thomas B Issekutz
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Adam M Huber
- Division of Rheumatology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Zaiping Liu
- Division of Clinical Biochemistry & Maritime Newborn Screening, Department of Pathology and Laboratory Medicine, Dalhousie University, IWK Health Centre, Halifax, Canada
| | - Beata Derfalvi
- Division of Immunology, Department of Paediatrics, Dalhousie University, IWK Health Centre, Halifax, Canada.
| |
Collapse
|
3
|
Rossignol F, Duarte Moreno MS, Benoist JF, Boehm M, Bourrat E, Cano A, Chabrol B, Cosson C, Díaz JLD, D'Harlingue A, Dimmock D, Freeman AF, García MT, Garganta C, Goerge T, Halbach SS, de Laffolie J, Lam CT, Martin L, Martins E, Meinhardt A, Melki I, Ombrello AK, Pérez N, Quelhas D, Scott A, Slavotinek AM, Soares AR, Stein SL, Süßmuth K, Thies J, Ferreira CR, Schiff M. Quantitative analysis of the natural history of prolidase deficiency: description of 17 families and systematic review of published cases. Genet Med 2021; 23:1604-1615. [PMID: 34040193 DOI: 10.1038/s41436-021-01200-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Prolidase deficiency is a rare inborn error of metabolism causing ulcers and other skin disorders, splenomegaly, developmental delay, and recurrent infections. Most of the literature is constituted of isolated case reports. We aim to provide a quantitative description of the natural history of the condition by describing 19 affected individuals and reviewing the literature. METHODS Nineteen patients were phenotyped per local institutional procedures. A systematic review following PRISMA criteria identified 132 articles describing 161 patients. Main outcome analyses were performed for manifestation frequency, diagnostic delay, overall survival, symptom-free survival, and ulcer-free survival. RESULTS Our cohort presented a wide variability of severity. Autoimmune disorders were found in 6/19, including Crohn disease, systemic lupus erythematosus, and arthritis. Another immune finding was hemophagocytic lymphohistiocytosis (HLH). Half of published patients were symptomatic by age 4 and had a delayed diagnosis (mean delay 11.6 years). Ulcers were present initially in only 30% of cases, with a median age of onset at 12 years old. CONCLUSION Prolidase deficiency has a broad range of manifestations. Symptoms at onset may be nonspecific, likely contributing to the diagnostic delay. Testing for this disorder should be considered in any child with unexplained autoimmunity, lower extremity ulcers, splenomegaly, or HLH.
Collapse
Affiliation(s)
- Francis Rossignol
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marvid S Duarte Moreno
- Reference Centre for Inherited Metabolic Diseases, Assistance Publique Hôpitaux de Paris, Hôpital universitaire Robert-Debré, Université de Paris, Paris, France
| | - Jean-François Benoist
- Reference Centre for Inherited Metabolic Diseases, Assistance Publique Hôpitaux de Paris, Hôpital universitaire Necker-Enfants malades, Université de Paris, Paris, France
| | - Manfred Boehm
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmanuelle Bourrat
- Reference Center for Genodermatoses MAGEC Saint Louis, Assistance Publique Hôpitaux de Paris, Hôpital universitaire Saint Louis, Paris, France
| | - Aline Cano
- Reference Center for Inherited Metabolic Disorders, Assistance Publique Hôpitaux de Marseille, Centre Hospitalier Universitaire de La Timone Enfants, Marseille, France
| | - Brigitte Chabrol
- Reference Center for Inherited Metabolic Disorders, Assistance Publique Hôpitaux de Marseille, Centre Hospitalier Universitaire de La Timone Enfants, Marseille, France
| | - Claudine Cosson
- Laboratoire de Biochimie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | | | - Arthur D'Harlingue
- Benioff Children's Hospital Oakland, University of California, San Francisco, Oakland, CA, USA
| | - David Dimmock
- Project Baby Bear, Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - María Tallón García
- Hospital Álvaro Cunqueiro, Universidad de Santiago de Compostela, Vigo, Spain
| | - Cheryl Garganta
- Division of Genetics and Metabolism, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tobias Goerge
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Sara S Halbach
- University of Chicago Medicine, University of Chicago, Chicago, IL, USA
| | - Jan de Laffolie
- University Children's Hospital, Justus-Liebig-University, Giessen, Germany
| | - Christina T Lam
- Seattle Children's Hospital, Seattle, WA, USA.,Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ludovic Martin
- Centre Hospitalier Universitaire d'Angers, Angers, France
| | | | - Andrea Meinhardt
- University Children's Hospital, Justus-Liebig-University, Giessen, Germany
| | - Isabelle Melki
- General Pediatrics, Infectious Disease and Internal Medicine Department, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Paris, France.,Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Paris, France.,Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris, France
| | - Amanda K Ombrello
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Noémie Pérez
- Centre Hospitalier de Valenciennes, Valenciennes, France
| | - Dulce Quelhas
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Unit for Multidisciplinary Research in Biomedicine, ICBAS, UP, Porto, Portugal
| | - Anna Scott
- Seattle Children's Hospital, Seattle, WA, USA.,Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Anne M Slavotinek
- Division of Medical Genetics, Department of Pediatrics, Benioff Children's Hospital San Francisco, University of California, San Francisco, San Francisco, CA, USA
| | | | - Sarah L Stein
- University of Chicago Medicine, University of Chicago, Chicago, IL, USA
| | - Kira Süßmuth
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jenny Thies
- Seattle Children's Hospital, Seattle, WA, USA
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Manuel Schiff
- Reference Centre for Inherited Metabolic Diseases, Assistance Publique Hôpitaux de Paris, Hôpital universitaire Robert-Debré, Université de Paris, Paris, France.,Reference Centre for Inherited Metabolic Diseases, Assistance Publique Hôpitaux de Paris, Hôpital universitaire Necker-Enfants malades, Université de Paris, Paris, France.,INSERM U1163, Institut Imagine, Paris, France
| |
Collapse
|
4
|
Linhares ND, Wilk P, Wątor E, Tostes MA, Weiss MS, Pena SDJ. Structural analysis of new compound heterozygous variants in PEPD gene identified in a patient with Prolidase Deficiency diagnosed by exome sequencing. Genet Mol Biol 2021; 44:e20200393. [PMID: 33877262 PMCID: PMC8056889 DOI: 10.1590/1678-4685-gmb-2020-0393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/21/2021] [Indexed: 11/22/2022] Open
Abstract
Prolidase Deficiency (PD) is an autosomal recessive rare disorder caused by loss or reduction of prolidase enzymatic activity due to variants in the PEPD gene. PD clinical features vary among affected individuals: skin ulcerations, recurrent infections, and developmental delay are common. In this study, we describe a 16-year-old boy with a mild PD phenotype comprising chronic eczema, recurrent infections and elevated IgE. Whole exome sequencing analysis revealed three PEPD variants: c.575T>C p.(Leu192Pro) inherited from the mother, and c.692_694del p.(Tyr231del) and c.1409G>A p.(Arg470His), both inherited from the father. The variant p.(Tyr231del) has been previously characterized by high-resolution X-ray structure analysis as altering protein dynamics/flexibility. In order to study the effects of the other two prolidase variants, we performed site directed mutagenesis purification and crystallization studies. A high-resolution X-ray structure could only be obtained for the p.(Arg470His) variant, which showed no significant structural differences in comparison to WT prolidase. On the other hand, the p.(Leu192Pro) variant led to significant protein destabilization. Hence, we conclude that the maternal p.(Leu192Pro) variant was likely causally associated with the proband´s disease, together with the known pathogenic paternal variant p.(Tyr231del). Our results demonstrated the utility of exome sequencing to perform diagnosis in PD cases with mild phenotype.
Collapse
Affiliation(s)
- Natália D Linhares
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Laboratório de Genômica Clínica, Belo Horizonte, MG, Brazil.,Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil
| | - Piotr Wilk
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography (HZB-MX), Berlin, Germany.,Jagiellonian University, Malopolska Centre of Biotechnology, Kraków, Poland
| | - Elżbieta Wątor
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography (HZB-MX), Berlin, Germany.,Jagiellonian University, Malopolska Centre of Biotechnology, Kraków, Poland
| | - Meire A Tostes
- Hospital das Clínicas da Universidade Federal de Minas Gerais, Serviço de Hematologia, Belo Horizonte, MG, Brazil
| | - Manfred S Weiss
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography (HZB-MX), Berlin, Germany
| | - Sergio D J Pena
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Laboratório de Genômica Clínica, Belo Horizonte, MG, Brazil.,Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Belo Horizonte, MG, Brazil.,Laboratório Gene - Núcleo de Genética Médica, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Spodenkiewicz M, Spodenkiewicz M, Cleary M, Massier M, Fitsialos G, Cottin V, Jouret G, Poirsier C, Doco-Fenzy M, Lèbre AS. Clinical Genetics of Prolidase Deficiency: An Updated Review. BIOLOGY 2020; 9:E108. [PMID: 32455636 PMCID: PMC7285180 DOI: 10.3390/biology9050108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/27/2023]
Abstract
Prolidase is a ubiquitous enzyme that plays a major role in the metabolism of proline-rich proteins. Prolidase deficiency is a rare autosomal recessive inborn metabolic and multisystemic disease, characterized by a protean association of symptoms, namely intellectual disability, recurrent infections, splenomegaly, skin lesions, auto-immune disorders and cytopenia. To our knowledge, no published review has assembled the different clinical data and research studies over prolidase deficiency. The aim of this study is to summarize the actual state of the art from the descriptions of all the patients with a molecular diagnosis of prolidase deficiency reported to date regarding the clinical, biological, histopathological features, therapeutic options and functional studies.
Collapse
Affiliation(s)
- Marta Spodenkiewicz
- Service de génétique, AMH2, CHU Reims, UFR de médecine, 51100 Reims, France; (M.M.); (C.P.); (M.D.-F.)
- SFR CAP SANTE, UFR de médecine, 51100 Reims, France;
| | - Michel Spodenkiewicz
- CESM—Pôle de Santé Mentale, CRIA, CIC-EC 1410 CHU de La Réunion, 97448 Saint-Pierre CEDEX, La Réunion, France;
- Equipe MOODS Inserm U1178, CESP, 94807 Villejuif, France
| | - Maureen Cleary
- Great Ormond Street Hospital NHS Foundation Trust and NIHR Biomedical Research Centre, London WC1N 3JH, UK;
| | - Marie Massier
- Service de génétique, AMH2, CHU Reims, UFR de médecine, 51100 Reims, France; (M.M.); (C.P.); (M.D.-F.)
| | - Giorgos Fitsialos
- The European Center for Genetics and DNA Identification, DNAlogy. 98 Vouliagmenis Ave. Glyfada, 16674 Athens, Greece;
| | - Vincent Cottin
- Department of Respiratory Medicine, National Reference Coordinating Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France; Claude Bernard University, Lyon 1, UMR754, IVPC, F-69008 Lyon, France;
| | - Guillaume Jouret
- National Center of Genetics—Laboratoire National de Santé, L-3555 Dudelange, Luxembourg;
| | - Céline Poirsier
- Service de génétique, AMH2, CHU Reims, UFR de médecine, 51100 Reims, France; (M.M.); (C.P.); (M.D.-F.)
| | - Martine Doco-Fenzy
- Service de génétique, AMH2, CHU Reims, UFR de médecine, 51100 Reims, France; (M.M.); (C.P.); (M.D.-F.)
- SFR CAP SANTE, UFR de médecine, 51100 Reims, France;
- EA3801, 51100 Reims, France
| | - Anne-Sophie Lèbre
- SFR CAP SANTE, UFR de médecine, 51100 Reims, France;
- Pôle de Biologie Territoriale, CHU Reims, Service de Génétique, 51100 Reims, France
| |
Collapse
|