1
|
Alfosea-Cuadrado GM, Zarzoso-Foj J, Adell A, Valverde-Navarro AA, González-Soler EM, Mangas-Sanjuán V, Blasco-Serra A. Population Pharmacokinetic-Pharmacodynamic Analysis of a Reserpine-Induced Myalgia Model in Rats. Pharmaceutics 2024; 16:1101. [PMID: 39204446 PMCID: PMC11359992 DOI: 10.3390/pharmaceutics16081101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
(1) Background: Fibromyalgia syndrome (FMS) is a chronic pain condition with widespread pain and multiple comorbidities, for which conventional therapies offer limited benefits. The reserpine-induced myalgia (RIM) model is an efficient animal model of FMS in rodents. This study aimed to develop a pharmacokinetic-pharmacodynamic (PK-PD) model of reserpine in rats, linking to its impact on monoamines (MAs). (2) Methods: Reserpine was administered daily for three consecutive days at dose levels of 0.1, 0.5, and 1 mg/kg. A total of 120 rats were included, and 120 PK and 828 PD observations were collected from 48 to 96 h after the first dose of reserpine. Non-linear mixed-effect data analysis was applied for structural PK-PD model definition, variability characterization, and covariate analysis. (3) Results: A one-compartment model best described reserpine in rats (V = 1.3 mL/kg and CL = 4.5 × 10-1 mL/h/kg). A precursor-pool PK-PD model (kin = 6.1 × 10-3 mg/h, kp = 8.6 × 10-4 h-1 and kout = 2.7 × 10-2 h-1) with a parallel transit chain (k0 = 1.9 × 10-1 h-1) characterized the longitudinal levels of MA in the prefrontal cortex, spinal cord, and amygdala in rats. Reserpine stimulates the degradation of MA from the pool compartment (Slope1 = 1.1 × 10-1 h) and the elimination of MA (Slope2 = 1.25 h) through the transit chain. Regarding the reference dose (1 mg/kg) of the RIM model, the administration of 4 mg/kg would lead to a mean reduction of 65% (Cmax), 80% (Cmin), and 70% (AUC) of MA across the brain regions tested. (4) Conclusions: Regional brain variations in neurotransmitter depletion were identified, particularly in the amygdala, offering insights for therapeutic strategies and biomarker identification in FMS research.
Collapse
Affiliation(s)
- Gloria M. Alfosea-Cuadrado
- Department of Human Anatomy and Embryology, University of Valencia, 46010 Valencia, Spain; (G.M.A.-C.); (A.A.V.-N.); (A.B.-S.)
| | - Javier Zarzoso-Foj
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain;
- Interuniversity Research Institute for Molecular Recognition and Technological Development, Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain
| | - Albert Adell
- Systems Neurobiology, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Spanish National Research Council (CSIC), 39011 Santander, Spain;
- Biomedical Research Networking Centre for Mental Health (CIBERSAM), 39011 Santander, Spain
| | - Alfonso A. Valverde-Navarro
- Department of Human Anatomy and Embryology, University of Valencia, 46010 Valencia, Spain; (G.M.A.-C.); (A.A.V.-N.); (A.B.-S.)
| | - Eva M. González-Soler
- Department of Human Anatomy and Embryology, University of Valencia, 46010 Valencia, Spain; (G.M.A.-C.); (A.A.V.-N.); (A.B.-S.)
| | - Víctor Mangas-Sanjuán
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain;
- Interuniversity Research Institute for Molecular Recognition and Technological Development, Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain
| | - Arantxa Blasco-Serra
- Department of Human Anatomy and Embryology, University of Valencia, 46010 Valencia, Spain; (G.M.A.-C.); (A.A.V.-N.); (A.B.-S.)
| |
Collapse
|
2
|
Lopes-Silva LB, Cunha DMG, Lima AC, Bioni VS, Gonçalves N, Kurita JPF, Wuo-Silva R, Silva RH. Sleep deprivation induces late deleterious effects in a pharmacological model of Parkinsonism. Exp Brain Res 2024; 242:1175-1190. [PMID: 38499659 DOI: 10.1007/s00221-024-06811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/18/2024] [Indexed: 03/20/2024]
Abstract
Parkinson's disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.
Collapse
Affiliation(s)
- L B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - D M G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - A C Lima
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - V S Bioni
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - N Gonçalves
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - J P F Kurita
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - R Wuo-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - R H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil.
| |
Collapse
|
3
|
Argenbright CM, Bertlesman AM, Russell IM, Greer TL, Peng YB, Fuchs PN. The Fibromyalgia Pain Experience: A Scoping Review of the Preclinical Evidence for Replication and Treatment of the Affective and Cognitive Pain Dimensions. Biomedicines 2024; 12:778. [PMID: 38672134 PMCID: PMC11048409 DOI: 10.3390/biomedicines12040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Fibromyalgia is a chronic, widespread pain disorder that is strongly represented across the affective and cognitive dimensions of pain, given that the underlying pathophysiology of the disorder is yet to be identified. These affective and cognitive deficits are crucial to understanding and treating the fibromyalgia pain experience as a whole but replicating this multidimensionality on a preclinical level is challenging. To understand the underlying mechanisms, animal models are used. In this scoping review, we evaluate the current primary animal models of fibromyalgia regarding their translational relevance within the affective and cognitive pain realms, as well as summarize treatments that have been identified preclinically for attenuating these deficits.
Collapse
Affiliation(s)
- Cassie M. Argenbright
- Department of Psychology and Biobehavioral Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alysia M. Bertlesman
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Izabella M. Russell
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Tracy L. Greer
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Yuan B. Peng
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA; (A.M.B.); (I.M.R.); (T.L.G.); (Y.B.P.)
| | - Perry N. Fuchs
- Department of Psychological Science, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| |
Collapse
|
4
|
Mokhemer SA, Desouky MK, Abdelghany AK, Ibrahim MFG. Stem cells therapeutic effect in a reserpine-induced fibromyalgia rat model: A possible NLRP3 inflammasome modulation with neurogenesis promotion in the cerebral cortex. Life Sci 2023; 325:121784. [PMID: 37196857 DOI: 10.1016/j.lfs.2023.121784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Fibromyalgia is a chronic pain syndrome with a multifactorial pathophysiology affecting 2-8 % of the population. AIMS To investigate the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) against fibromyalgia-related cerebral cortex damage and the possible underlying mechanisms of action. MATERIALS AND METHODS Rats were randomly allocated into three groups; control, fibromyalgia and fibromyalgia treated with BMSCs groups. Physical and behavioural assessments were performed. Cerebral cortices were collected for biochemical and histological assessment. KEY FINDINGS Fibromyalgia group showed behavioural changes indicating presence of pain, fatigue, depression, and sleep disturbances. Moreover, biochemical biomarkers alterations were demonstrated by a significant decrease in brain monoamines and GSH levels, but MDA, NO, TNF-alpha, HMGB-1, NLRP3, and caspase-1 levels significantly increased. Furthermore, histological assessment revealed structural and ultrastructural alterations indicating neuronal and neuroglial degeneration with microglia activation, an increase in mast cell number and IL-1β immune-expression. Additionally, a significant decrease in Beclin-1 immune-expression, and blood brain barrier disruption were noticed. Interestingly, BMSCs administration significantly improved behavioural alterations, restored the reduced brain monoamines and oxidative stress markers, and reduced TNF-alpha, HMGB-1, NLRP3, and caspase-1 levels. Profoundly, cerebral cortices demonstrated improved histological structure, significant decrease in mast cell number and IL-1β immune-expression, besides a significant increase in Beclin-1 and DCX immune-expression. SIGNIFICANCE For the best of our knowledge, this is the first study showing ameliorative effects for BMSCs treatment in fibromyalgia-related cerebral cortical damage. The neurotherapeutic effects of BMSCs could be attributed to NLRP3 inflammasome signaling pathway inhibition, mast cell deactivation, and stimulation of neurogenesis and autophagy.
Collapse
Affiliation(s)
- Sahar A Mokhemer
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt.
| | - Maha K Desouky
- Department of Anatomy, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt
| | - Asmaa K Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Manar Fouli Gaber Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt
| |
Collapse
|
5
|
Pharmacological Interaction of Quercetin Derivatives of Tilia americana and Clinical Drugs in Experimental Fibromyalgia. Metabolites 2022; 12:metabo12100916. [PMID: 36295818 PMCID: PMC9607183 DOI: 10.3390/metabo12100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Fibromyalgia (FM) is a pain syndrome characterized by chronic widespread pain and CNS comorbidities. Tilia americana var. mexicana is a medicinal species used to treat anxiety, insomnia, and acute or chronic pain. However, its spectrum of analgesic efficacy for dysfunctional pain is unknown. To investigate a possible therapeutic alternative for FM-type pain, an aqueous Tilia extract (TE) and its flavonoid fraction (FF) containing rutin and isoquercitrin were evaluated alone and/or combined with clinical drugs (tramadol—TRA and pramipexol—PRA) using the reserpine-induced FM model in rats. Chromatographic analysis allowed the characterization of flavonoids, while a histological analysis confirmed their presence in the brain. TE (10–100 mg/kg, i.p.) and FF (10–300 mg/kg, i.p.) produced significant and dose-dependent antihyperalgesic and antiallodynic effects equivalent to TRA (3–10 mg/kg, i.p.) or PRA (0.01–1 mg/kg, s.c.). Nevertheless, the combination of FF + TRA or FF + PRA resulted in an antagonistic interaction by possible competitive action on the serotonin transporter or µ-opioid and D2 receptors, respectively, according to the in silico analysis. Flavonoids were identified in cerebral regions because of their self-epifluorescence. In conclusion, Tilia possesses potential properties to relieve FM-type pain. However, the consumption of this plant or flavonoids such as quercetin derivatives in combination with analgesic drugs might reduce their individual benefits.
Collapse
|
6
|
Nagakura Y. Therapeutic Approaches to Nociplastic Pain Based on Findings in the Reserpine-Induced Fibromyalgia-Like Animal Model. J Pharmacol Exp Ther 2022; 381:106-119. [PMID: 35246482 DOI: 10.1124/jpet.121.001051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Nociplastic pain, the third category of chronic pain, has emerged as a serious medical issue. Due to its significant negative influences on patients and society, high prevalence, and lack of sufficiently effective treatments, more efficacious therapies are required. This review highlights the potential therapeutic approaches identified in studies that used reserpine-induced myalgia (RIM) animal model that exhibits nociplastic pain-associated phenotypes. These studies have revealed that biologic processes including the chronic reduction of monoamines, increase of oxidative/nitrosative stresses and inflammatory mediators, upregulation of pronociceptive neurotransmitters and their receptors, increase of trophic factors, enhancement of the apoptotic pathway, sensory nerve sensitization, and activation of immune cells in central and/or peripheral regions underly the nociplastic pain-associated phenotypes in RIM animal model. Potential therapeutic approaches to nociplastic pain, i.e., 1) functional modification of specific molecules whose expression is distinctly altered following the chronic reduction of monoamines, 2) targeting the molecules that are responsible for other major categories of chronic pain (i.e., chronic inflammatory pain and neuropathic pain), 3) supplementation of nutrition to correct the disrupted nutritional balance, 4) improvement of physical constitution by natural substances, and 5) nonpharmacological interventions, have been identified. SIGNIFICANCE STATEMENT: Studies in reserpine-induced myalgia (RIM) animal model have revealed the pathologies that occur after the chronic reduction of monoamines and identified potential therapeutic approaches to nociplastic pain. Translation of their analgesic efficacy from RIM animal model to patients remains an issue to be addressed. Successful translation would lead to better therapies for nociplastic pain.
Collapse
Affiliation(s)
- Yukinori Nagakura
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
7
|
Miyahara K, Nishimaru H, Matsumoto J, Setogawa T, Taguchi T, Ono T, Nishijo H. Involvement of Parvalbumin-Positive Neurons in the Development of Hyperalgesia in a Mouse Model of Fibromyalgia. FRONTIERS IN PAIN RESEARCH 2022; 2:627860. [PMID: 35295447 PMCID: PMC8915639 DOI: 10.3389/fpain.2021.627860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Fibromyalgia (FM) presents as chronic systemic pain, which might be ascribed to central sensitization, in which pain information processing is amplified in the central nervous system. Since patients with FM display elevated gamma oscillations in the pain matrix and parvalbumin (PV)-positive neurons play a critical role in induction of gamma oscillations, we hypothesized that changes in PV-positive neurons are involved in hyperalgesia in fibromyalgia. In the present study, to investigate a role of PV-positive neurons in neuropathic pain, mice received reserpine administration for 3 consecutive days as an animal model of FM (RES group), while control mice received vehicle injections in the same way (VEH group). The mice were subjected to hot-plate and forced swim tests, and immuno-stained PV-positive neurons were counted in the pain matrix. We investigated relationships between PV-positive neuron density in the pain matrix and pain avoidance behaviors. The results indicated that the mice in the RES group showed transient bodyweight loss and longer immobility time in the forced swim test than the mice in the VEH group. In the hot-plate test, the RES group showed shorter response latencies and a larger number of jumps in response to nociceptive thermal stimulus than the VEH group. Histological examination indicated an increase in the density of PV-positive neurons in the primary somatosensory cortex (S1) in the RES group. Furthermore, response latencies to the hot-plate were significantly and negatively correlated with the density of PV-positive neurons in the S1. These results suggest a critical role for PV-positive neurons in the S1 to develop hyperalgesia in FM.
Collapse
Affiliation(s)
- Kenichiro Miyahara
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Toru Taguchi
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Taketoshi Ono
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
8
|
Nociceptive chemical hypersensitivity in the spinal cord of a rat reserpine-induced fibromyalgia model. Neurosci Res 2022; 181:87-94. [PMID: 35304863 DOI: 10.1016/j.neures.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 01/07/2023]
Abstract
The pathological mechanisms of fibromyalgia (FM) are largely unknown. Recently, a rat reserpine-induced pain model showing exaggerated pain-related behaviors to mechanical and thermal stimuli has been used in FM research. However, the model has not been fully characterized. Here, we investigated nociceptive hypersensitivity to chemical stimuli and its spinal mechanisms to further characterize the model. The rat model was induced by administering reserpine to the nervous system. Nociceptive behaviors to chemical stimuli were quantified using the formalin pain test, and neuronal activation of the stimuli was examined using spinal c-Fos immunohistochemistry and electrophysiological recordings of superficial dorsal horn (SDH) neurons. The duration of pain-related behaviors was prolonged in both phases I (0-5min) and II (10-60min) and the interphase; and the number of c-Fos-immunoreactive nuclei increased in laminae I-II, III-IV, and V-VI at the spinal segments L3-L5 on the side ipsilateral to the formalin injection, and these factors were significantly and positively correlated. The action potentials of SDH neurons induced by formalin injection were markedly increased in rats treated with reserpine. These results demonstrate that pain-related behaviors are facilitated by noxious chemical stimuli in a rat reserpine-induced FM model, and that the behavioral hypersensitivity is associated with hyperactivation of SDH neurons.
Collapse
|
9
|
Brum ES, Becker G, Fialho MFP, Oliveira SM. Animal models of fibromyalgia: What is the best choice? Pharmacol Ther 2021; 230:107959. [PMID: 34265360 DOI: 10.1016/j.pharmthera.2021.107959] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Fibromyalgia (FM) is a complex syndrome, with an indefinite aetiology and intricate pathophysiology that affects 2 - 3% of the world population. From the beginning of the 2000s, experimental animal models have been developed to mimic clinical FM and help obtain a better understanding of the relevant neurobiology. These animal models have enabled a broad study of FM symptoms and mechanisms, as well as new treatment strategies. Current experimental FM models include the reserpine-induced systemic depletion of biogenic amines, muscle application of acid saline, and stress-based (cold, sound, or swim) approaches, among other emerging models. FM models should: (i) mimic the cardinal symptoms and complaints reported by FM patients (e.g., spontaneous nociception, muscle pain, hypersensitivity); (ii) mimic primary comorbidities that can aggravate quality of life and lead to worse outcomes (e.g., fatigue, sleep disturbance, depression, anxiety); (iii) mimic the prevalent pathological mechanisms (e.g., peripheral and central sensitization, inflammation/neuroinflammation, change in the levels of the excitatory and inhibitory neurotransmitters); and (iv) demonstrate a pharmacological profile similar to the clinical treatment of FM. However, it is difficult for any one of these models to include the entire spectrum of clinical FM features once even FM patients are highly heterogeneous. In the past six years (2015 - 2020), a wide range of experimental FM studies has amounted to the literature reinforcing the need for an updated review. Here we have described, in detail, several approaches used to experimentally study FM, with a focus on recent studies in the field and in previously less discussed mechanisms. We highlight each model's challenges, limitations, and future directions, intending to help preclinical researchers establish the correct experimental FM model to use depending on their goals.
Collapse
Affiliation(s)
- Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|