1
|
Hebert E, Silvia M, Wessel GM. Structural and molecular distinctions of primary and secondary spines in the sea urchin Lytechinus variegatus. Sci Rep 2024; 14:28525. [PMID: 39557944 PMCID: PMC11574069 DOI: 10.1038/s41598-024-76239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
Sea urchins (echinoids) are common model organisms for research in developmental biology and for their unusual transition from a bilaterally organized larva into a post-metamorphic adult with pentaradial body symmetry. The adult also has a calcareous endoskeleton with a multimetameric pattern of continuously added elements, among them the namesake of this phylum, spines. Nearly all echinoids have both large primary spines, and an associated set of smaller secondary spines. We hypothesize that the secondary spines of the tropical variegated urchin species, Lytechinus variegatus, are morphologically and molecularly distinct structures from primary spines and not just small versions of the large spines. To test this premise, we examined both spine types using light microscopy, micro-CT imaging, lectin labeling, transcriptomics, and fluorescence in situ hybridization (FISH). Our findings reveal basic similarities between the two spine types in mineral and cellular anatomy, but with clear differences in growth patterns, genes expressed, and in the profile of various expressed genes. In particular, secondary spines have non-overlapping, longitudinally concentrated growth bands that lead to a blunt and straight profile, and a distinct transcriptome involving the upregulation in many genes in comparison to the primary spines. Neural, ciliary, and extracellular matrix interacting factors are implicated in the differentially expressed gene (DEG) dataset, including two genes-ONECUT2 and an uncharacterized discoidin- and thrombospondin-containing protein. We show spine type-specific localizations by FISH, which will be of interest to ongoing work in urchin spine patterning. These results demonstrate that primary and secondary spines of L. variegatus have overlapping but distinct molecular and biomineralization characteristics, suggesting unique developmental, regenerative, and representation in this spiny dermal phylum.
Collapse
Affiliation(s)
- Elise Hebert
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Madison Silvia
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Mercurio S, Gattoni G, Scarì G, Ascagni M, Barzaghi B, Elphick MR, Croce JC, Schubert M, Benito-Gutiérrez E, Pennati R. A feather star is born: embryonic development and nervous system organization in the crinoid Antedon mediterranea. Open Biol 2024; 14:240115. [PMID: 39165121 PMCID: PMC11336682 DOI: 10.1098/rsob.240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024] Open
Abstract
Crinoids belong to the Echinodermata, marine invertebrates with a highly derived adult pentaradial body plan. As the sister group to all other extant echinoderms, crinoids occupy a key phylogenetic position to explore the evolutionary history of the whole phylum. However, their development remains understudied compared with that of other echinoderms. Therefore, the aim here was to establish the Mediterranean feather star (Antedon mediterranea) as an experimental system for developmental biology. We first set up a method for culturing embryos in vitro and defined a standardized staging system for this species. We then optimized protocols to characterize the morphological and molecular development of the main structures of the feather star body plan. Focusing on the nervous system, we showed that the larval apical organ includes serotonergic, GABAergic and glutamatergic neurons, which develop within a conserved anterior molecular signature. We described the composition of the early post-metamorphic nervous system and revealed that it has an anterior signature. These results further our knowledge on crinoid development and provide new techniques to investigate feather star embryogenesis. This will pave the way for the inclusion of crinoids in comparative studies addressing the origin of the echinoderm body plan and the evolutionary diversification of deuterostomes.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Giorgio Scarì
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Miriam Ascagni
- Unitech NOLIMITS, Università degli Studi di Milano, Milan, Italy
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Maurice R. Elphick
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jenifer C. Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Elia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Genentech, South San Francisco, CA, USA
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Clarke DN, Formery L, Lowe CJ. See-Star: a versatile hydrogel-based protocol for clearing large, opaque and calcified marine invertebrates. EvoDevo 2024; 15:8. [PMID: 38918798 PMCID: PMC11201320 DOI: 10.1186/s13227-024-00228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Studies of morphology and developmental patterning in adult stages of many invertebrates are hindered by opaque structures, such as shells, skeletal elements, and pigment granules that block or refract light and necessitate sectioning for observation of internal features. An inherent challenge in studies relying on surgical approaches is that cutting tissue is semi-destructive, and delicate structures, such as axonal processes within neural networks, are computationally challenging to reconstruct once disrupted. To address this problem, we developed See-Star, a hydrogel-based tissue clearing protocol to render the bodies of opaque and calcified invertebrates optically transparent while preserving their anatomy in an unperturbed state, facilitating molecular labeling and observation of intact organ systems. The resulting protocol can clear large (> 1 cm3) specimens to enable deep-tissue imaging, and is compatible with molecular techniques, such as immunohistochemistry and in situ hybridization to visualize protein and mRNA localization. To test the utility of this method, we performed a whole-mount imaging study of intact nervous systems in juvenile echinoderms and molluscs and demonstrate that See-Star allows for comparative studies to be extended far into development, facilitating insights into the anatomy of juveniles and adults that are usually not amenable to whole-mount imaging.
Collapse
Affiliation(s)
- D N Clarke
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - L Formery
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - C J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Chan Zuckerberg BioHub, San Francisco, CA, USA
| |
Collapse
|
4
|
Cocurullo M, Paganos P, Benvenuto G, Arnone MI. Characterization of thyrotropin-releasing hormone producing neurons in sea urchin, from larva to juvenile. Front Neurosci 2024; 18:1378520. [PMID: 38660219 PMCID: PMC11039832 DOI: 10.3389/fnins.2024.1378520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Most sea urchin species are indirect developers, going through a larval stage called pluteus. The pluteus possesses its own nervous system, consisting mainly of the apical organ neurons (controlling metamorphosis and settlement) and ciliary band neurons (controlling swimming behavior and food collection). Additional neurons are located in various areas of the gut. In recent years, the molecular complexity of this apparently "simple" nervous system has become apparent, with at least 12 neuronal populations identified through scRNA-sequencing in the species Strongylocentrotus purpuratus. Among these, there is a cluster of neurosecretory cells that produce a thyrotropin-releasing hormone-type neuropeptide (TRHergic) and that are also photosensory (expressing a Go-Opsin). However, much less is known about the organization of the nervous system in other sea urchin species. The aim of this work was to thoroughly characterize the localization of the TRHergic cells from early pluteus to juvenile stages in the Mediterranean sea urchin species Paracentrotus lividus combining immunostaining and whole mount in situ hybridization. We also compared the localization of TRHergic cells in early plutei of two other sea urchin species, Arbacia lixula and Heliocidaris tuberculata. This work provides new information on the anatomy and development of the nervous system in sea urchins. Moreover, by comparing the molecular signature of the TRHergic cells in P. lividus and S. purpuratus, we have obtained new insights how TRH-type neuropeptide signaling evolved in relatively closely related species.
Collapse
Affiliation(s)
| | | | | | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
5
|
Turner RL. The Metameric Echinoderm. Integr Org Biol 2024; 6:obae005. [PMID: 38558855 PMCID: PMC10980344 DOI: 10.1093/iob/obae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Animal phyla are distinguished by their body plans, the ways in which their bodies are organized. A distinction is made, for example, among phyla with bodies of many segments (metameric; e.g., annelids, arthropods, and chordates), others with completely unsegmented bodies (americ; e.g., flatworms and mollusks), and a few phyla with bodies of 2 or 3 regions (oligomeric; e.g., echinoderms and hemichordates). The conventional view of echinoderms as oligomeric coelomates adequately considers early development, but it fails to recognize the metameric body plan that develops in the juvenile rudiment and progresses during indeterminate adult growth. As in the 3 phyla traditionally viewed to be metameric (annelids, arthropods, and chordates), metamery, or metamerism, in echinoderms occurs by (1) subterminal budding of (2) serially repeated components of (3) mesodermal origin. A major difference in most echinoderms is that metamery is expressed along multiple body axes, usually 5. The view of a metameric echinoderm might invite new discussions of metazoan body plans and new approaches to the study of morphogenesis, particularly in comparative treatments with annelids, arthropods, and chordates.
Collapse
Affiliation(s)
- R L Turner
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901-6975, USA
| |
Collapse
|
6
|
Zhai R, Wang Q. Phylogenetic Analysis Provides Insight Into the Molecular Evolution of Nociception and Pain-Related Proteins. Evol Bioinform Online 2023; 19:11769343231216914. [PMID: 38107163 PMCID: PMC10725132 DOI: 10.1177/11769343231216914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Nociception and pain sensation are important neural processes in humans to avoid injury. Many proteins are involved in nociception and pain sensation in humans; however, the evolution of these proteins in animals is unknown. Here, we chose nociception- and pain-related proteins, including G protein-coupled receptors (GPCRs), ion channels (ICs), and neuropeptides (NPs), which are reportedly associated with nociception and pain in humans, and identified their homologs in various animals by BLAST, phylogenetic analysis and protein architecture comparison to reveal their evolution from protozoans to humans. We found that the homologs of transient receptor potential channel A 1 (TRPA1), TRAPM, acid-sensing IC (ASIC), and voltage-dependent calcium channel (VDCC) first appear in Porifera. Substance-P receptor 1 (TACR1) emerged from Coelenterata. Somatostatin receptor type 2 (SSTR2), TRPV1 and voltage-dependent sodium channels (VDSC) appear in Platyhelminthes. Calcitonin gene-related peptide receptor (CGRPR) was first identified in Nematoda. However, opioid receptors (OPRs) and most NPs were discovered only in vertebrates and exist from agnatha to humans. The results demonstrated that homologs of nociception and pain-related ICs exist from lower animal phyla to high animal phyla, and that most of the GPCRs originate from low to high phyla sequentially, whereas OPRs and NPs are newly evolved in vertebrates, which provides hints of the evolution of nociception and pain-related proteins in animals and humans.
Collapse
Affiliation(s)
- Rujun Zhai
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, P. R. China
| | - Qian Wang
- Changping Laboratory, Beijing, P. R. China
| |
Collapse
|
7
|
Formery L, Peluso P, Kohnle I, Malnick J, Thompson JR, Pitel M, Uhlinger KR, Rokhsar DS, Rank DR, Lowe CJ. Molecular evidence of anteroposterior patterning in adult echinoderms. Nature 2023; 623:555-561. [PMID: 37914929 DOI: 10.1038/s41586-023-06669-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023]
Abstract
The origin of the pentaradial body plan of echinoderms from a bilateral ancestor is one of the most enduring zoological puzzles1,2. Because echinoderms are defined by morphological novelty, even the most basic axial comparisons with their bilaterian relatives are problematic. To revisit this classical question, we used conserved anteroposterior axial molecular markers to determine whether the highly derived adult body plan of echinoderms masks underlying patterning similarities with other deuterostomes. We investigated the expression of a suite of conserved transcription factors with well-established roles in the establishment of anteroposterior polarity in deuterostomes3-5 and other bilaterians6-8 using RNA tomography and in situ hybridization in the sea star Patiria miniata. The relative spatial expression of these markers in P. miniata ambulacral ectoderm shows similarity with other deuterostomes, with the midline of each ray representing the most anterior territory and the most lateral parts exhibiting a more posterior identity. Strikingly, there is no ectodermal territory in the sea star that expresses the characteristic bilaterian trunk genetic patterning programme. This finding suggests that from the perspective of ectoderm patterning, echinoderms are mostly head-like animals and provides a developmental rationale for the re-evaluation of the events that led to the evolution of the derived adult body plan of echinoderms.
Collapse
Affiliation(s)
- L Formery
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
| | - P Peluso
- Pacific Biosciences, Menlo Park, CA, USA
| | - I Kohnle
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - J Malnick
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - J R Thompson
- School of Biological Sciences, University of Southampton, Southampton, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - M Pitel
- Columbia Equine Hospital, Gresham, OR, USA
| | - K R Uhlinger
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - D S Rokhsar
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Chan Zuckerberg BioHub, San Francisco, CA, USA
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
| | - D R Rank
- Pacific Biosciences, Menlo Park, CA, USA
| | - C J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Chan Zuckerberg BioHub, San Francisco, CA, USA.
| |
Collapse
|
8
|
Li T, Kirwan J, Arnone MI, Nilsson DE, La Camera G. A model of decentralized vision in the sea urchin Diadema africanum. iScience 2023; 26:106295. [PMID: 36950121 PMCID: PMC10025101 DOI: 10.1016/j.isci.2023.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Sea urchins can detect light and move in relation to luminous stimuli despite lacking eyes. They presumably detect light through photoreceptor cells distributed on their body surface. However, there is currently no mechanistic explanation of how these animals can process light to detect visual stimuli and produce oriented movement. Here, we present a model of decentralized vision in echinoderms that includes all known processing stages, from photoreceptor cells to radial nerve neurons to neurons contained in the oral nerve ring encircling the mouth of the animals. In the model, light stimuli captured by photoreceptor cells produce neural activity in the radial nerve neurons. In turn, neural activity in the radial nerves is integrated in the oral nerve ring to produce a profile of neural activity reaching spatially across several ambulacra. This neural activity is readout to produce a model of movement. The model captures previously published data on the behavior of sea urchin Diadema africanum probed with a variety of physical stimuli. The specific pattern of neural connections used in the model makes testable predictions on the properties of single neurons and aggregate neural behavior in Diadema africanum and other echinoderms, offering a potential understanding of the mechanism of visual orientation in these animals.
Collapse
Affiliation(s)
- Tianshu Li
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA
- Center for Neural Circuit Dynamics, Stony Brook University, Stony Brook, NY, USA
| | - John Kirwan
- Stazione Zoologica Anton Dohrn, Naples, Italy
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Giancarlo La Camera
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA
- Center for Neural Circuit Dynamics, Stony Brook University, Stony Brook, NY, USA
- Corresponding author
| |
Collapse
|
9
|
Nanglu K, Cole SR, Wright DF, Souto C. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. Biol Rev Camb Philos Soc 2023; 98:316-351. [PMID: 36257784 DOI: 10.1111/brv.12908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Deuterostomes are the major division of animal life which includes sea stars, acorn worms, and humans, among a wide variety of ecologically and morphologically disparate taxa. However, their early evolution is poorly understood, due in part to their disparity, which makes identifying commonalities difficult, as well as their relatively poor early fossil record. Here, we review the available morphological, palaeontological, developmental, and molecular data to establish a framework for exploring the origins of this important and enigmatic group. Recent fossil discoveries strongly support a vermiform ancestor to the group Hemichordata, and a fusiform active swimmer as ancestor to Chordata. The diverse and anatomically bewildering variety of forms among the early echinoderms show evidence of both bilateral and radial symmetry. We consider four characteristics most critical for understanding the form and function of the last common ancestor to Deuterostomia: Hox gene expression patterns, larval morphology, the capacity for biomineralization, and the morphology of the pharyngeal region. We posit a deuterostome last common ancestor with a similar antero-posterior gene regulatory system to that found in modern acorn worms and cephalochordates, a simple planktonic larval form, which was later elaborated in the ambulacrarian lineage, the ability to secrete calcium minerals in a limited fashion, and a pharyngeal respiratory region composed of simple pores. This animal was likely to be motile in adult form, as opposed to the sessile origins that have been historically suggested. Recent debates regarding deuterostome monophyly as well as the wide array of deuterostome-affiliated problematica further suggest the possibility that those features were not only present in the last common ancestor of Deuterostomia, but potentially in the ur-bilaterian. The morphology and development of the early deuterostomes, therefore, underpin some of the most significant questions in the study of metazoan evolution.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Selina R Cole
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - David F Wright
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - Camilla Souto
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,School of Natural Sciences & Mathematics, Stockton University, 101 Vera King Farris Dr, Galloway, NJ, 08205, USA
| |
Collapse
|
10
|
Changes in podial skeletons during growth in the echinoid Hemicentrotus pulcherrimus. ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-022-00585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
11
|
Formery L, Wakefield A, Gesson M, Toisoul L, Lhomond G, Gilletta L, Lasbleiz R, Schubert M, Croce JC. Developmental atlas of the indirect-developing sea urchin Paracentrotus lividus: From fertilization to juvenile stages. Front Cell Dev Biol 2022; 10:966408. [DOI: 10.3389/fcell.2022.966408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The sea urchin Paracentrotus lividus has been used as a model system in biology for more than a century. Over the past decades, it has been at the center of a number of studies in cell, developmental, ecological, toxicological, evolutionary, and aquaculture research. Due to this previous work, a significant amount of information is already available on the development of this species. However, this information is fragmented and rather incomplete. Here, we propose a comprehensive developmental atlas for this sea urchin species, describing its ontogeny from fertilization to juvenile stages. Our staging scheme includes three periods divided into 33 stages, plus 15 independent stages focused on the development of the coeloms and the adult rudiment. For each stage, we provide a thorough description based on observations made on live specimens using light microscopy, and when needed on fixed specimens using confocal microscopy. Our descriptions include, for each stage, the main anatomical characteristics related, for instance, to cell division, tissue morphogenesis, and/or organogenesis. Altogether, this work is the first of its kind providing, in a single study, a comprehensive description of the development of P. lividus embryos, larvae, and juveniles, including details on skeletogenesis, ciliogenesis, myogenesis, coelomogenesis, and formation of the adult rudiment as well as on the process of metamorphosis in live specimens. Given the renewed interest for the use of sea urchins in ecotoxicological, developmental, and evolutionary studies as well as in using marine invertebrates as alternative model systems for biomedical investigations, this study will greatly benefit the scientific community and will serve as a reference for specialists and non-specialists interested in studying sea urchins.
Collapse
|
12
|
Zheng Y, Cong X, Liu H, Wang Y, Storey KB, Chen M. Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus. BIOLOGY 2022; 11:1538. [PMID: 36290441 PMCID: PMC9598280 DOI: 10.3390/biology11101538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Here, we described the complex nervous system at five early developmental stages (blastula, gastrula, auricularia, doliolaria and pentactula) of a holothurian species with highly economic value, Apostichopus japonicus. The results revealed that the nervous system of embryos and larvae is mainly distributed in the anterior apical region, ciliary bands or rings, and the feeding and attachment organs, and that serotonergic immunoreactivity was not observed until the embryo developed into the late gastrula; these are evolutionarily conserved features of echinoderm, hemichordate and protostome larvae. Furthermore, based on available transcriptome data, we reported the neuropeptide precursors profile at different embryonic and larval developmental stages. This analysis showed that 40 neuropeptide precursors present in adult sea cucumbers were also identified at different developmental stages of embryos and larvae, and only four neuropeptide precursors (SWYG precursor 2, GYWKDLDNYVKAHKT precursor, Neuropeptide precursor 14-like precursor, GLRFAmprecursor-like precursor) predicted in adults were absent in embryos and larvae. Combining the quantitative expression of ten specific neuropeptide precursor genes (NPs) by qRT-PCR, we revealed the potential important roles of neuropeptides in embryo development, feeding and attachment in A. japonicus larvae. In conclusion, this work provides novel perspectives on the diverse physiological functions of neuropeptides and contributes to understanding the evolution of neuropeptidergic systems in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
13
|
Tokanai K, Kamei Y, Minokawa T. An easy and rapid staining method for confocal microscopic observation and reconstruction of three-dimensional images of echinoderm larvae and juveniles. Dev Growth Differ 2021; 63:478-487. [PMID: 34747504 DOI: 10.1111/dgd.12758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023]
Abstract
The morphologies of the internal organs of echinoderm larvae and juveniles are difficult to study using conventional optical microscopes because of their structural complexity and opaqueness. This paper describes an easy and rapid protocol involving Nile blue staining followed by benzyl alcohol/benzyl benzoate (BABB) clearing to overcome this limitation. This method was developed for a three-dimensional (3D) analysis of the internal structures of advanced larvae and juveniles of echinoderms (the sea lily Metacrinus rotundus, the sea urchin Hemicentrotus pulcherrimus, and the sand dollar Scaphechinus mirabilis) and is suitable for obtaining serial optical images by confocal microscopy without the use of specific antibodies or special reagents for labeling. Nile blue is an easy-to-use stain that offers several advantages for confocal microscopy such as it can stain various tissues with strong fluorescent signals without substantial bleaching during observation. We found that the strong fluorescence signal of Nile blue quickly yielded clear high-resolution optical section images for 3D reconstruction. BABB clearing rendered opaque larvae highly transparent. The clearing procedure was also easy and quick. During the process, agarose embedding prior to staining and clearing was found to be critical for handling the samples of less than 500-μm length and stabilizing their orientations. To conclude, the protocol described is useful for performing a rapid and accurate 3D morphological analysis of echinoderm larvae and juveniles.
Collapse
Affiliation(s)
- Kohei Tokanai
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology Core Research Facilities, National Institute for Basic Biology, Aichi, Japan
| | - Takuya Minokawa
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Japan
| |
Collapse
|
14
|
Thompson JR, Paganos P, Benvenuto G, Arnone MI, Oliveri P. Post-metamorphic skeletal growth in the sea urchin Paracentrotus lividus and implications for body plan evolution. EvoDevo 2021; 12:3. [PMID: 33726833 PMCID: PMC7968366 DOI: 10.1186/s13227-021-00174-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Understanding the molecular and cellular processes that underpin animal development are crucial for understanding the diversity of body plans found on the planet today. Because of their abundance in the fossil record, and tractability as a model system in the lab, skeletons provide an ideal experimental model to understand the origins of animal diversity. We herein use molecular and cellular markers to understand the growth and development of the juvenile sea urchin (echinoid) skeleton. Results We developed a detailed staging scheme based off of the first ~ 4 weeks of post-metamorphic life of the regular echinoid Paracentrotus lividus. We paired this scheme with immunohistochemical staining for neuronal, muscular, and skeletal tissues, and fluorescent assays of skeletal growth and cell proliferation to understand the molecular and cellular mechanisms underlying skeletal growth and development of the sea urchin body plan. Conclusions Our experiments highlight the role of skeletogenic proteins in accretionary skeletal growth and cell proliferation in the addition of new metameric tissues. Furthermore, this work provides a framework for understanding the developmental evolution of sea urchin body plans on macroevolutionary timescales. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-021-00174-1.
Collapse
Affiliation(s)
- Jeffrey R Thompson
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK. .,UCL Center for Life's Origins and Evolution, London, UK.
| | - Periklis Paganos
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK. .,UCL Center for Life's Origins and Evolution, London, UK.
| |
Collapse
|