1
|
Chen X, Liu X, Zhong X, Ren J, Wang H, Song X, Fan C, Xu J, Li C, Wang L, Hu Q, Lv J, Xing Y, Gao L, Xu H. Lifespan trajectories of the morphology and tractography of the corpus callosum: A 5.0 T MRI study. Brain Res 2024; 1850:149413. [PMID: 39719192 DOI: 10.1016/j.brainres.2024.149413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
The corpus callosum (CC) is the largest white matter fiber bundle connecting the two hemispheres, facilitating interhemispheric integration and hemispheric specialization. Neuroimaging studies have identified the CC as a marker for aging and various neuropsychiatric disorders. However, studies focusing on high-resolution imaging and detailed lifespan characterizations of CC morphology and connectivity are still limited, highlighting the need for further investigation.Utilizing the high-resolution brain imaging capabilities of 5.0 T ultra-high-field MRI, we collected lifespan data from 266 healthy adults aged 18-89. We segmented and measured the midsagittal area, circularity, thickness, and tractography of the CC using both linear regression and nonlinear fitting models. Our analysis revealed that, despite regional variations, these measures generally exhibited a brief initial increase, likely reflecting developmental maturation, followed by a rapid decline associated with aging-related degeneration. Coupling analysis further indicated that the positive correlation between CC morphology and tractography becomes stronger with increasing age, suggesting age-related structural-functional coupling. External validation and correlation with cognitive-behavioral tests showed that CC subregions with significant age-related changes predominantly involve areas connecting the frontal and parietal networks, particularly those associated with executive function and attentional control. These findings provide new insights into the lifespan evolution of CC morphology and tractography, as well as their degeneration associated with cognitive processing and sensory-motor integration.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xitong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huan Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaopeng Song
- Shanghai United Imaging Healthcare Co Ltd, Shanghai 201815, China
| | - Chenhong Fan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jia Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chunyu Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liang Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiang Hu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jinfeng Lv
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yaowen Xing
- Shanghai United Imaging Healthcare Co Ltd, Shanghai 201815, China.
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Nehme R, Pietiläinen O, Barrett LE. Genomic, molecular, and cellular divergence of the human brain. Trends Neurosci 2024; 47:491-505. [PMID: 38897852 DOI: 10.1016/j.tins.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
While many core biological processes are conserved across species, the human brain has evolved with unique capacities. Current understanding of the neurobiological mechanisms that endow human traits as well as associated vulnerabilities remains limited. However, emerging data have illuminated species divergence in DNA elements and genome organization, in molecular, morphological, and functional features of conserved neural cell types, as well as temporal differences in brain development. Here, we summarize recent data on unique features of the human brain and their complex implications for the study and treatment of brain diseases. We also consider key outstanding questions in the field and discuss the technologies and foundational knowledge that will be required to accelerate understanding of human neurobiology.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Watson CM, Sherwood CC, Phillips KA. Myelin characteristics of the corpus callosum in capuchin monkeys (Sapajus [Cebus] apella) across the lifespan. Sci Rep 2022; 12:8786. [PMID: 35610294 PMCID: PMC9130294 DOI: 10.1038/s41598-022-12893-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
The midsagittal area of the corpus callosum (CC) is frequently studied in relation to brain development, connectivity, and function. Here we quantify myelin characteristics from electron microscopy to understand more fully differential patterns of white matter development occurring within the CC. We subdivided midsagittal regions of the CC into: I-rostrum and genu, II-rostral body, III-anterior midbody, IV-posterior midbody, and V-isthmus and splenium. The sample represented capuchin monkeys ranging in age from 2 weeks to 35 years (Sapajus [Cebus] apella, n = 8). Measurements of myelin thickness, myelin fraction, and g-ratio were obtained in a systematic random fashion. We hypothesized there would be a period of rapid myelin growth within the CC in early development. Using a locally weighted regression analysis (LOESS), we found regional differences in myelin characteristics, with posterior regions showing more rapid increases in myelin thickness and sharper decreases in g-ratio in early development. The most anterior region showed the most sustained growth in myelin thickness. For all regions over the lifespan, myelin fraction increased, plateaued, and decreased. These results suggest differential patterns of nonlinear myelin growth occur early in development and well into adulthood in the CC of capuchin monkeys.
Collapse
Affiliation(s)
- Chase M Watson
- Department of Psychology and Neuroscience Program, Trinity University, San Antonio, TX, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Kimberley A Phillips
- Department of Psychology and Neuroscience Program, Trinity University, San Antonio, TX, USA.
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
4
|
Hopkins WD, Westerhausen R, Schapiro S, Sherwood CC. Heritability in corpus callosum morphology and its association with tool use skill in chimpanzees (Pan troglodytes): Reproducibility in two genetically isolated populations. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12784. [PMID: 35044083 PMCID: PMC8830772 DOI: 10.1111/gbb.12784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 02/03/2023]
Abstract
The corpus callosum (CC) is the major white matter tract connecting the left and right cerebral hemispheres. It has been hypothesized that individual variation in CC morphology is negatively associated with forebrain volume (FBV) and this accounts for variation in behavioral and brain asymmetries as well as sex differences. To test this hypothesis, CC surface area and thickness as well as FBV was quantified in 221 chimpanzees with known pedigrees. CC surface area, thickness and FBV were significantly heritable and phenotypically associated with each other; however, no significant genetic association was found between FBV, CC surface area and thickness. The CC surface area and thickness measures were also found to be significantly heritable in both chimpanzee cohorts as were phenotypic associations with variation in asymmetries in tool use skill, suggesting that these findings are reproducible. Finally, significant phenotypic and genetic associations were found between hand use skill and region-specific variation in CC surface area and thickness. These findings suggest that common genes may underlie individual differences in chimpanzee tool use skill and interhemispheric connectivity as manifest by variation in surface area and thickness within the anterior region of the CC.
Collapse
Affiliation(s)
- William D. Hopkins
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and ResearchUniversity of Texas M D Anderson Cancer CenterBastropTexasUSA
| | | | - Steve Schapiro
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and ResearchUniversity of Texas M D Anderson Cancer CenterBastropTexasUSA
- Department of Experimental MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human PaleobiologyThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|