1
|
Geng C, Li R, Li S, Liu P, Peng Y, Liu C, Wang Z, Zhang H, Li A. Noradrenergic inputs from the locus coeruleus to anterior piriform cortex and the olfactory bulb modulate olfactory outputs. Nat Commun 2025; 16:260. [PMID: 39747920 PMCID: PMC11697270 DOI: 10.1038/s41467-024-55609-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Norepinephrine (NE) released from locus coeruleus (LC) noradrenergic (NAergic) neurons plays a pivotal role in the regulation of olfactory behaviors. However, the precise circuits and receptor mechanisms underlying this function are not well understood. Here, in DBH-Cre mice model, we show that LC NAergic neurons project directly to both anterior piriform cortex (aPC) and the olfactory bulb (OB). By using pharmacological and optogenetic manipulations in vitro and in vivo, we found that NE reduces the excitability of aPC pyramidal neurons directly via α2 receptors and that it bidirectionally regulates the activity of OB mitral cells via modulation of inhibitory inputs. Activation of the NAergic projection reduced both spontaneous and odor-evoked activity in the aPC/OB in awake mice, enhanced the odor-decoding ability of the aPC, and decreased the odor-decoding ability of the OB. Furthermore, activation of LC-aPC/OB NAergic projections accelerated odor discrimination and specific inactivation of the LC-aPC/OB NAergic pathway impaired olfactory detection and discrimination. These findings identify the mechanism underlying NAergic modulation of the aPC/OB and elucidate its role in odor processing and olfactory behaviors.
Collapse
Affiliation(s)
- Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruochen Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Peng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Changyu Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
2
|
Minami-Ogawa Y, Kiyokage E, Yamanishi H, Horie S, Ichikawa S, Toida K. Structural Basis for Histaminergic Regulation of Neural Circuits in the Mouse Olfactory Bulb. J Comp Neurol 2024; 532:e25671. [PMID: 39387358 DOI: 10.1002/cne.25671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
Odor information is modulated by centrifugal inputs from other brain regions to the olfactory bulb (OB). Neurons containing monoamines, such as serotonin, acetylcholine, and noradrenaline, are well known as centrifugal inputs; however, the role of histamine, which is also present in the OB, is not well understood. In this study, we examined the histaminergic neurons projecting from the hypothalamus to the OB. We used an antibody against histidine decarboxylase (HDC), a synthesizing enzyme of histamine, to identify histaminergic neurons and assess their localization within the OB and the ultrastructure of their fibers and synapses using multiple immunostaining laser microscopy, ultra-high voltage electron microscopy (EM), and EM to confirm their relationships with other neurons. To further identify the origin nucleus of the histaminergic neurons projecting to the OB, we injected the retrograde tracer FluoroGold and analyzed the pathway to the OB anterogradely. HDC-immunoreactive (-ir) fibers were abundant in the olfactory nerve (ON) layer compared to other monoamines. HDC-ir neurons received asymmetrical synapses from ONs and formed synapses containing pleomorphic vesicles with variable postsynaptic densities to non-ON elements, thus forming serial synapses. We also confirmed that histaminergic neurons project from the rostral ventral tuberomammillary nucleus to the granule cell layer of the OB and, for the first time, successfully visualized their axons from the hypothalamus to the OB. These findings indicate that histamine may regulate odor discrimination in the OB, suggesting a regulatory relationship between hypothalamic function and olfaction. We thus elucidate morphological mechanisms with tuberomammillary nucleus-derived histaminergic neurons involved in olfactory information.
Collapse
Affiliation(s)
| | - Emi Kiyokage
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Haruyo Yamanishi
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Sawa Horie
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Department of Anatomy, National Defense Medical College, Tokorozawa, Japan
| | - Satoshi Ichikawa
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka, Japan
| |
Collapse
|
3
|
Sartsanga C, Phengchat R, Wako T, Fukui K, Ohmido N. Localization and quantitative distribution of a chromatin structural protein Topoisomerase II on plant chromosome using HVTEM and UHVTEM. Micron 2024; 179:103596. [PMID: 38359615 DOI: 10.1016/j.micron.2024.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Topoisomerase II (TopoII) is an essential structural protein of the metaphase chromosome. It maintains the axial compaction of chromosomes during metaphase. It is localized at the axial region of chromosomes and accumulates at the centromeric region in metaphase chromosomes. However, little is known about TopoII localization and distribution in plant chromosomes, except for several publications. We used high voltage transmission electron microscopy (HVTEM) and ultra-high voltage transmission electron microscopy (UHVTEM) in conjunction with immunogold labeling and visualization techniques to detect TopoII and investigate its localization, alignment, and density on the barley chromosome at 1.4 nm scale. We found that HVTEM and UHVTEM combined with immunogold labeling is suitable for the detection of structural proteins, including a single molecule of TopoII. This is because the average size of the gold particles for TopoII visualization after silver enhancement is 8.9 ± 3.9 nm, which is well detected. We found that 31,005 TopoII molecules are distributed along the barley chromosomes in an unspecific pattern at the chromosome arms and accumulate specifically at the nucleolus organizer regions (NORs) and centromeric region. The TopoII density were 1.32-fold, 1.58-fold, and 1.36-fold at the terminal region, at the NORs, and the centromeric region, respectively. The findings of TopoII localization in this study support the multiple reported functions of TopoII in the barley metaphase chromosome.
Collapse
Affiliation(s)
- Channarong Sartsanga
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada-ku, 657-8501, Kobe, Japan
| | - Rinyaporn Phengchat
- Nanotechnology Research Centre, National Research of Council, 11421 Saskatchewan Drive, T6G 2M9 Edmonton, Alberta, Canada
| | - Toshiyuki Wako
- Institute of Crop Sciences, National Agriculture and Food Research Organization, 2-1-1 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kiichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada-ku, 657-8501, Kobe, Japan.
| |
Collapse
|
4
|
Kiyokage E, Ichikawa S, Horie S, Hayashi S, Toida K. Effects of estradiol on dopaminergic synapse formation in the mouse olfactory bulb. J Comp Neurol 2023; 531:528-547. [PMID: 36519231 DOI: 10.1002/cne.25441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/24/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Olfactory glomeruli are the sites of initial synaptic integration in olfactory information processing. They are surrounded by juxtaglomerular (JG) cells, which include periglomerular, superficial short axon, and external tufted cells. A subpopulation of JG cells expresses the dopamine synthetic enzymes, tyrosine hydroxylase (TH), and aromatic l-amino acid decarboxylase (AADC). TH cells corelease γ-aminobutyric acid (GABA) and their processes extend to multiple glomeruli forming intra- and interglomerular circuits. It is well established that 17β-estradiol (E2) exerts wide ranging effects in the central nervous system. However, participation of E2 in the modulation of neurotransmission and synaptic plasticity of TH cells in olfactory glomeruli is unknown. To address this, we subcutaneously implanted a 60-day release pellet of E2 or placebo into intact male mice and compared glomerular TH, AADC, and vesicular γ-aminobutyric acid transporter (VGAT) immunoreactivity between them. High-voltage electron microscopy (HVEM) and ultra-HVEM using immunogold revealed significantly increased immunoreactive intensity at the cellular level for TH and AADC after E2 treatment and for VGAT in TH cells. These results indicate that E2 may affect the interplay between dopaminergic and GABAergic systems. Moreover, random-section electron microscopy analysis showed a significant increase in the number of symmetrical synapses from TH cell to mitral/tufted cell dendrites after E2 treatment. This result was supported by quantitative immunofluorescence staining with synapse markers. Together, these data indicate that E2 may regulate inhibition between TH cells and olfactory bulb neurons within the glomerulus via interaction between dopaminergic and GABAergic systems, thereby contributing to neuromodulation of odor information processing.
Collapse
Affiliation(s)
- Emi Kiyokage
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Satoshi Ichikawa
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan
| | - Sawa Horie
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan
| | - Shuichi Hayashi
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan
| | - Kazunori Toida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan.,Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|