1
|
Merchant A, Zhou X. Caste-biased patterns of brain investment in the subterranean termite Reticulitermes flavipes. iScience 2024; 27:110052. [PMID: 38883809 PMCID: PMC11176635 DOI: 10.1016/j.isci.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/04/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Investment into neural tissue is expected to reflect the specific sensory and behavioral capabilities of a particular organism. Termites are eusocial insects that exhibit a caste system in which individuals can develop into one of several morphologically and behaviorally distinct castes. However, it is unclear to what extent these differences between castes are reflected in the anatomy of the brain. To address this question, we used deformation-based morphometry to conduct pairwise comparisons between the brains of different castes in the eastern subterranean termite, Reticulitermes flavipes. Workers exhibited enlargement in the antennal lobes and mushroom bodies, while reproductives showed increased investment into the optic lobes and central body. In addition, caste-specific enlargement was observed in regions that could not be mapped to distinct neuropils, most notably in soldiers. These findings demonstrate a significant influence of caste development on brain anatomy in termites alongside convergence with eusocial hymenopteran systems.
Collapse
Affiliation(s)
- Austin Merchant
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Ke H, Chen Y, Zhang B, Duan S, Ma X, Ren B, Wang Y. Odorant Receptors Expressing and Antennal Lobes Architecture Are Linked to Caste Dimorphism in Asian Honeybee, Apis cerana (Hymenoptera: Apidae). Int J Mol Sci 2024; 25:3934. [PMID: 38612745 PMCID: PMC11012130 DOI: 10.3390/ijms25073934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Insects heavily rely on the olfactory system for food, mating, and predator evasion. However, the caste-related olfactory differences in Apis cerana, a eusocial insect, remain unclear. To explore the peripheral and primary center of the olfactory system link to the caste dimorphism in A. cerana, transcriptome and immunohistochemistry studies on the odorant receptors (ORs) and architecture of antennal lobes (ALs) were performed on different castes. Through transcriptomesis, we found more olfactory receptor genes in queens and workers than in drones, which were further validated by RT-qPCR, indicating caste dimorphism. Meanwhile, ALs structure, including volume, surface area, and the number of glomeruli, demonstrated a close association with caste dimorphism. Particularly, drones had more macroglomeruli possibly for pheromone recognition. Interestingly, we found that the number of ORs and glomeruli ratio was nearly 1:1. Also, the ORs expression distribution pattern was very similar to the distribution of glomeruli volume. Our results suggest the existence of concurrent plasticity in both the peripheral olfactory system and ALs among different castes of A. cerana, highlighting the role of the olfactory system in labor division in insects.
Collapse
Affiliation(s)
- Haoqin Ke
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Yu Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Baoyi Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Shiwen Duan
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Xiaomei Ma
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun 130024, China; (H.K.); (Y.C.); (B.Z.); (S.D.); (X.M.); (B.R.)
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Hebberecht L, Wainwright JB, Thompson C, Kershenbaum S, McMillan WO, Montgomery SH. Plasticity and genetic effects contribute to different axes of neural divergence in a community of mimetic Heliconius butterflies. J Evol Biol 2023; 36:1116-1132. [PMID: 37341138 DOI: 10.1111/jeb.14188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/12/2023] [Accepted: 04/16/2023] [Indexed: 06/22/2023]
Abstract
Changes in ecological preference, often driven by spatial and temporal variation in resource distribution, can expose populations to environments with divergent information content. This can lead to adaptive changes in the degree to which individuals invest in sensory systems and downstream processes, to optimize behavioural performance in different contexts. At the same time, environmental conditions can produce plastic responses in nervous system development and maturation, providing an alternative route to integrating neural and ecological variation. Here, we explore how these two processes play out across a community of Heliconius butterflies. Heliconius communities exhibit multiple Mullerian mimicry rings, associated with habitat partitioning across environmental gradients. These environmental differences have previously been linked to heritable divergence in brain morphology in parapatric species pairs. They also exhibit a unique dietary adaptation, known as pollen feeding, that relies heavily on learning foraging routes, or trap-lines, between resources, which implies an important environmental influence on behavioural development. By comparing brain morphology across 133 wild-caught and insectary-reared individuals from seven Heliconius species, we find strong evidence for interspecific variation in patterns of neural investment. These largely fall into two distinct patterns of variation; first, we find consistent patterns of divergence in the size of visual brain components across both wild and insectary-reared individuals, suggesting genetically encoded divergence in the visual pathway. Second, we find interspecific differences in mushroom body size, a central component of learning and memory systems, but only among wild caught individuals. The lack of this effect in common-garden individuals suggests an extensive role for developmental plasticity in interspecific variation in the wild. Finally, we illustrate the impact of relatively small-scale spatial effects on mushroom body plasticity by performing experiments altering the cage size and structure experienced by individual H. hecale. Our data provide a comprehensive survey of community level variation in brain structure, and demonstrate that genetic effects and developmental plasticity contribute to different axes of interspecific neural variation.
Collapse
Affiliation(s)
- Laura Hebberecht
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | | | | | | | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, Bristol, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
4
|
Polidori C, Piwczynski M, Ronchetti F, Johnston NP, Szpila K. Host-trailing satellite flight behaviour is associated with greater investment in peripheral visual sensory system in miltogrammine flies. Sci Rep 2022; 12:2773. [PMID: 35177753 PMCID: PMC8854417 DOI: 10.1038/s41598-022-06704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Insect sensory systems are the subjects of different selective pressures that shape their morphology. In many species of the flesh fly subfamily Miltogramminae (Diptera: Sarcophagidae) that are kleptoparasitic on bees and wasps, females perch on objects close to the host nests and, once a returning host is detected, they follow it in flight at a fixed distance behind until reaching the nest. We hypothesized that such satellite (SAT) flight behaviour, which implies a finely coordinated trailing flight, is associated with an improved visual system, compared to species adopting other, non-satellite (NON-SAT) strategies. After looking at body size and common ancestry, we found that SAT species have a greater number of ommatidia and a greater eye surface area when compared to NON-SAT species. Ommatidium area is only affected by body size, suggesting that selection changes disproportionately (relative to body size variation) the number of ommatidia and as a consequence the eye area, instead of ommatidium size. SAT species also tend to have larger ocelli, but their role in host-finding was less clear. This suggests that SAT species may have a higher visual acuity by increasing ommatidia number, as well as better stability during flight and motion perception through larger ocelli. Interestingly, antennal length was significantly reduced in SAT species, and ommatidia number negatively correlated with antennal length. While this finding does not imply a selection pressure of improved antennal sensory system in species adopting NON-SAT strategies, it suggests an inverse resource (i.e. a single imaginal disc) allocation between eyes and antennae in this fly subfamily.
Collapse
Affiliation(s)
- Carlo Polidori
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, via Celoria 26, 20133, Milan, Italy.
| | - Marcin Piwczynski
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Federico Ronchetti
- Department of Animal Ecology and Tropical Biology, University of Wuerzburg, Hubland Nord, 97074, Würzburg, Germany
| | - Nikolas P Johnston
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Krzysztof Szpila
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
5
|
Gandia KM, Cappa F, Baracchi D, Hauber ME, Beani L, Uy FMK. Caste, Sex, and Parasitism Influence Brain Plasticity in a Social Wasp. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.803437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain plasticity is widespread in nature, as it enables adaptive responses to sensory demands associated with novel stimuli, environmental changes and social conditions. Social Hymenoptera are particularly well-suited to study neuroplasticity, because the division of labor amongst females and the different life histories of males and females are associated with specific sensory needs. Here, we take advantage of the social wasp Polistes dominula to explore if brain plasticity is influenced by caste and sex, and the exploitation by the strepsipteran parasite Xenos vesparum. Within sexes, male wasps had proportionally larger optic lobes, while females had larger antennal lobes, which is consistent with the sensory needs of sex-specific life histories. Within castes, reproductive females had larger mushroom body calyces, as predicted by their sensory needs for extensive within-colony interactions and winter aggregations, than workers who frequently forage for nest material and prey. Parasites had different effects on female and male hosts. Contrary to our predictions, female workers were castrated and behaviorally manipulated by female or male parasites, but only showed moderate differences in brain tissue allocation compared to non-parasitized workers. Parasitized males maintained their reproductive apparatus and sexual behavior. However, they had smaller brains and larger sensory brain regions than non-parasitized males. Our findings confirm that caste and sex mediate brain plasticity in P. dominula, and that parasitic manipulation drives differential allocation of brain regions depending on host sex.
Collapse
|