1
|
Abstract
Motoneurons are the 'final common path' between the central nervous system (that intends, selects, commands, and organises movement) and muscles (that produce the behaviour). Motoneurons are not passive relays, but rather integrate synaptic activity to appropriately tune output (spike trains) and therefore the production of muscle force. In this chapter, we focus on studies of mammalian motoneurons, describing their heterogeneity whilst providing a brief historical account of motoneuron recording techniques. Next, we describe adult motoneurons in terms of their passive, transition, and active (repetitive firing) properties. We then discuss modulation of these properties by somatic (C-boutons) and dendritic (persistent inward currents) mechanisms. Finally, we briefly describe select studies of human motor unit physiology and relate them to findings from animal preparations discussed earlier in the chapter. This interphyletic approach to the study of motoneuron physiology is crucial to progress understanding of how these diverse neurons translate intention into behaviour.
Collapse
|
2
|
Bączyk M, Manuel M, Roselli F, Zytnicki D. Diversity of Mammalian Motoneurons and Motor Units. ADVANCES IN NEUROBIOLOGY 2022; 28:131-150. [PMID: 36066824 DOI: 10.1007/978-3-031-07167-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although they share the common function of controlling muscle fiber contraction, spinal motoneurons display a remarkable diversity. Alpha-motoneurons are the "final common pathway", which relay all the information from spinal and supraspinal centers and allow the organism to interact with the outside world by controlling the contraction of muscle fibers in the muscles. On the other hand, gamma-motoneurons are specialized motoneurons that do not generate force and instead specifically innervate muscle fibers inside muscle spindles, which are proprioceptive organs embedded in the muscles. Beta-motoneurons are hybrid motoneurons that innervate both extrafusal and intrafusal muscle fibers. Even among alpha-motoneurons, there exists an exquisite diversity in terms of motoneuron electrical and molecular properties, physiological and structural properties of their neuromuscular junctions, and molecular and contractile properties of the innervated muscle fibers. This diversity, across species, across muscles, and across muscle fibers in a given muscle, underlie the vast repertoire of movements that one individual can perform.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Marin Manuel
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France.
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
| | - Daniel Zytnicki
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France
| |
Collapse
|
3
|
Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS. Proc Natl Acad Sci U S A 2016; 113:E8316-E8325. [PMID: 27930290 DOI: 10.1073/pnas.1605210113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The molecular and cellular basis of selective motor neuron (MN) vulnerability in amyotrophic lateral sclerosis (ALS) is not known. In genetically distinct mouse models of familial ALS expressing mutant superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS), we demonstrate selective degeneration of alpha MNs (α-MNs) and complete sparing of gamma MNs (γ-MNs), which selectively innervate muscle spindles. Resistant γ-MNs are distinct from vulnerable α-MNs in that they lack synaptic contacts from primary afferent (IA) fibers. Elimination of these synapses protects α-MNs in the SOD1 mutant, implicating this excitatory input in MN degeneration. Moreover, reduced IA activation by targeted reduction of γ-MNs in SOD1G93A mutants delays symptom onset and prolongs lifespan, demonstrating a pathogenic role of surviving γ-MNs in ALS. This study establishes the resistance of γ-MNs as a general feature of ALS mouse models and demonstrates that synaptic excitation of MNs within a complex circuit is an important determinant of relative vulnerability in ALS.
Collapse
|
4
|
Deardorff AS, Romer SH, Sonner PM, Fyffe REW. Swimming against the tide: investigations of the C-bouton synapse. Front Neural Circuits 2014; 8:106. [PMID: 25278842 PMCID: PMC4167003 DOI: 10.3389/fncir.2014.00106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/17/2014] [Indexed: 11/19/2022] Open
Abstract
C-boutons are important cholinergic modulatory loci for state-dependent alterations in motoneuron firing rate. m2 receptors are concentrated postsynaptic to C-boutons, and m2 receptor activation increases motoneuron excitability by reducing the action potential afterhyperpolarization. Here, using an intensive review of the current literature as well as data from our laboratory, we illustrate that C-bouton postsynaptic sites comprise a unique structural/functional domain containing appropriate cellular machinery (a “signaling ensemble”) for cholinergic regulation of outward K+ currents. Moreover, synaptic reorganization at these critical sites has been observed in a variety of pathologic states. Yet despite recent advances, there are still great challenges for understanding the role of C-bouton regulation and dysregulation in human health and disease. The development of new therapeutic interventions for devastating neurological conditions will rely on a complete understanding of the molecular mechanisms that underlie these complex synapses. Therefore, to close this review, we propose a comprehensive hypothetical mechanism for the cholinergic modification of α-MN excitability at C-bouton synapses, based on findings in several well-characterized neuronal systems.
Collapse
Affiliation(s)
- Adam S Deardorff
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Shannon H Romer
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Patrick M Sonner
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| | - Robert E W Fyffe
- Boonshoft School of Medicine, Department of Neuroscience, Cell Biology and Physiology, Wright State University Dayton, OH, USA
| |
Collapse
|
5
|
Delestrée N, Manuel M, Iglesias C, Elbasiouny SM, Heckman CJ, Zytnicki D. Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. J Physiol 2014; 592:1687-703. [PMID: 24445319 DOI: 10.1113/jphysiol.2013.265843] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), an adult onset disease in which there is progressive degeneration of motoneurones, it has been suggested that an intrinsic hyperexcitability of motoneurones (i.e. an increase in their firing rates), contributes to excitotoxicity and to disease onset. Here we show that there is no such intrinsic hyperexcitability in spinal motoneurones. Our studies were carried out in an adult mouse model of ALS with a mutated form of superoxide dismutase 1 around the time of the first muscle fibre denervations. We showed that the recruitment current, the voltage threshold for spiking and the frequency-intensity gain in the primary range are all unchanged in most spinal motoneurones, despite an increased input conductance. On its own, increased input conductance would decrease excitability, but the homeostasis for excitability is maintained due to an upregulation of a depolarizing current that is activated just below the spiking threshold. However, this homeostasis failed in a substantial fraction of motoneurones, which became hypoexcitable and unable to produce sustained firing in response to ramps of current. We found similar results both in lumbar motoneurones recorded in anaesthetized mice, and in sacrocaudal motoneurones recorded in vitro, indicating that the lack of hyperexcitability is not caused by anaesthetics. Our results suggest that, if excitotoxicity is indeed a mechanism leading to degeneration in ALS, it is not caused by the intrinsic electrical properties of motoneurones but by extrinsic factors such as excessive synaptic excitation.
Collapse
Affiliation(s)
- Nicolas Delestrée
- Laboratoire de Neurophysique et Physiologie, UMR CNRS 8119, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France.
| | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Abstract
Our intent in this review was to consider the relationship between the biophysical properties of motoneurons and the mechanisms by which they transduce the synaptic inputs they receive into changes in their firing rates. Our emphasis has been on experimental results obtained over the past twenty years, which have shown that motoneurons are just as complex and interesting as other central neurons. This work has shown that motoneurons are endowed with a rich complement of active dendritic conductances, and flexible control of both somatic and dendritic channels by endogenous neuromodulators. Although this new information requires some revision of the simple view of motoneuron input-output properties that was prevalent in the early 1980's (see sections 2.3 and 2.10), the basic aspects of synaptic transduction by motoneurons can still be captured by a relatively simple input-output model (see section 2.3, equations 1-3). It remains valid to describe motoneuron recruitment as a product of the total synaptic current delivered to the soma, the effective input resistance of the motoneuron and the somatic voltage threshold for spike initiation (equations 1 and 2). However, because of the presence of active channels activated in the subthreshold range, both the delivery of synaptic current and the effective input resistance depend upon membrane potential. In addition, activation of metabotropic receptors by achetylcholine, glutamate, noradrenaline, serotonin, substance P and thyrotropin releasing factor (TRH) can alter the properties of various voltage- and calcium-sensitive channels and thereby affect synaptic current delivery and input resistance. Once motoneurons are activated, their steady-state rate of repetitive discharge is linearly related to the amount of injected or synaptic current reaching the soma (equation 3). However, the slope of this relation, the minimum discharge rate and the threshold current for repetitive discharge are all subject to neuromodulatory control. There are still a number of unresolved issues concerning the control of motoneuron discharge by synaptic inputs. Under dynamic conditions, when synaptic input is rapidly changing, time- and activity-dependent changes in the state of ionic channels will alter both synaptic current delivery to the spike-generating conductances and the relation between synaptic current and discharge rate. There is at present no general quantitative expression for motoneuron input-output properties under dynamic conditions. Even under steady-state conditions, the biophysical mechanisms underlying the transfer of synaptic current from the dendrites to the soma are not well understood, due to the paucity of direct recordings from motoneuron dendrites. It seems likely that resolving these important issues will keep motoneuron afficiandoes well occupied during the next twenty years.
Collapse
Affiliation(s)
- R K Powers
- Department of Physiology & Biophysics, University of Washington School of Medicine, Box 357290, Seattle, Washington 98195-7290, USA
| | | |
Collapse
|
8
|
Holmberg P, Kellerth JO. Do synaptic rearrangements underlie compensatory reflex enhancement in spinal motoneurons after partial cell loss? Synapse 2000; 38:384-91. [PMID: 11044885 DOI: 10.1002/1098-2396(20001215)38:4<384::aid-syn3>3.0.co;2-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In adult cats, avulsion of a spinal ventral root induces retrograde cell death among the corresponding motoneurons and, also, enhanced monosynaptic reflexes ipsilaterally in the adjacent uninjured spinal cord segments. The present study investigates possible mechanisms behind this reflex potentiation. At 1-12 weeks after unilateral L7 ventral root avulsion, the L7 dorsal root ganglia were bilaterally injected with choleragenoid-HRP to light microscopically quantify the amount of HRP-labeled terminals in the motor nuclei of the lesioned L7 segment and adjacent intact L6+S1 segments. In addition, motoneuron synaptology and individual HRP-labeled boutons were analyzed electron microscopically. In the L7 segment, the loss of motoneurons at 12 weeks after ventral root avulsion was accompanied by a marked loss of HRP-labeled boutons in the corresponding ventral horn. In the L6/S1 segments, the monosynaptic reflex enhancement found ipsilaterally at 12 weeks postoperatively (mean 212%) was not accompanied by an increased HRP-labeling in the ventral horn (mean 109%), indicating that no sprouting or enlargement of the monosynaptic boutons had occurred. Ultrastructurally, the values for apposition length, total active site length, cross-sectional area, and mitochondrial density of the labeled boutons were also similar between the two sides. However, ipsilaterally the L6/S1 motoneurons exhibited an increased membrane covering by presumably excitatory boutons. The present results indicate that after partial cell death in a motoneuron pool the remaining motoneurons may undergo compensatory synaptic rearrangements leading to increased excitability and enhanced reflexes.
Collapse
Affiliation(s)
- P Holmberg
- Department of Integrative Medical Biology, Section for Anatomy, Ume a University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
9
|
Korogod SM, Kulagina IB, Horcholle-Bossavit G, Gogan P, Tyc-Dumont S. Activity-dependent reconfiguration of the effective dendritic field of motoneurons. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000619)422:1<18::aid-cne2>3.0.co;2-a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Simon M, Destombes J, Horcholle-Bossavit G, Thiesson D. Postnatal development of alpha- and gamma-peroneal motoneurons in kittens: an ultrastructural study. Neurosci Res 1996; 25:77-89. [PMID: 8808802 DOI: 10.1016/0168-0102(96)01030-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Motoneurons innervating the peroneus brevis muscle of 1 week- and 3 week-old kittens were retrogradely labelled by HRP and examined by electron microscopy. At 1 week the distribution of mean cell body diameters was unimodal. Consequently alpha- and gamma-motoneurons could not be identified by their size. The aim of this study was to see whether the alpha- and gamma-motoneurons of kittens could be identified using the combination of ultrastructural criteria previously defined in the adult cat. Using these three criteria it was not possible to distinguish all the motoneurons as either alpha- or gamma in the kitten and a fourth criterion (frequency of F bouton profiles) was added to aid identification. However, with these four criteria, at 1 week six of 21 motoneurons and at 3 weeks two of 18 could still not be clearly identified as alpha or gamma (four were tentatively considered to be gamma, and four could not be identified). The maturation of alpha-motoneurons between 1 week and the adult was accompanied by an increase in somatic membrane area and a significant decrease in the somatic packing density of F boutons. On gamma-motoneurons there was a decrease in the somatic packing density of F boutons between 1 and 3 weeks. However, the numbers of F and S boutons remained stable for both motoneuron types. Age-related changes in apposition and active zone lengths of F and S boutons characterize the synaptic rearrangements which are occurring during the postnatal development of motoneurons.
Collapse
Affiliation(s)
- M Simon
- Laboratoire de Physiologie et Biologie de la Motricité, CNRS URA 1448, Université René Descartes, UFR Biomédicale, Paris, France
| | | | | | | |
Collapse
|
11
|
Abstract
This study examined the synaptic terminal coverage of primate triceps surae (TS) motoneurons at the electron microscopic level. In three male pigtail macaques, motoneurons were labeled by retrograde transport of cholera toxin-horseradish peroxidase that was injected into TS muscles bilaterally and visualized with tetramethylbenzidine stabilized with diaminobenzidine. Somatic, proximal dendritic, and distal dendritic synaptic terminals were classified by standard criteria and measured. Overall and type-specific synaptic terminal coverages and frequencies were determined. Labeled cells were located in caudal L5 to rostral S1 ventral horn and ranged from 40 to 74 microns in diameter (average, 54 microns). The range and unimodal distribution of diameters, the label used, and the presence of C terminals on almost all cells indicated that the 15 cell bodies and associated proximal dendrites analyzed here probably belonged to alpha-motoneurons. Synaptic terminals covered 39% of the cell body membrane, 60% of the proximal dendritic membrane, and 40% of the distal dendritic membrane. At each of these three sites, F terminals (flattened or pleomorphic vesicles, usually symmetric active zones, average contact length 1.6 microns) were most common, averaging 52%, 56%, and 58% of total coverage and 56%, 57%, and 58% of total number of cell bodies, proximal dendrites, and distal dendrites respectively. S terminals (round vesicles, usually asymmetric active zones, average contact length 1.3 microns) averaged 24%, 29%, and 33% of coverage and 33%, 35%, and 36% of number at these three sites, respectively. Thus, S terminals were slightly more prominent relative to F terminals on distal dendrites than on cell bodies. C terminals (spherical vesicles, subsynaptic cisterns associated with rough endoplasmic reticulum, average contact length 3.5 microns) constituted 24% and 11% of total terminal coverage on cell bodies and proximal dendrites, respectively, and averaged 11% and 6% of terminal number at these two locations. M terminals (spherical vesicles, postsynaptic Taxi bodies, some with presynaptic terminals, average contact length 2.7 microns) were absent on cell bodies and averaged 3% and 7% of total coverage and 2% and 5% of terminals on proximal and distal dendrites, respectively. Except for M terminals, which tended to be smaller distally, terminal contact length was not correlated with location. Total and type-specific coverages and frequencies were not correlated with cell body diameter. Primate TS motoneurons are similar to cat TS motoneurons in synaptic terminal morphology, frequency, and distribution. However, primate terminals appear to be smaller, so that the fraction of membrane covered by them is lower.
Collapse
Affiliation(s)
- K A Starr
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201
| | | |
Collapse
|
12
|
Saito K, Matsumura A. Quantitative investigations of spinal motoneurons and their synaptic structures in a teleost: A morphometrical analysis with special reference to axosomatic synapses. J Morphol 1993; 218:281-300. [DOI: 10.1002/jmor.1052180305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
van Asselt E, de Graaf F, van Raamsdonk W. Ultrastructural characteristics of zebrafish spinal motoneurons innervating glycolytic white, and oxidative red and intermediate muscle fibers. Acta Histochem 1993; 95:31-44. [PMID: 8279233 DOI: 10.1016/s0065-1281(11)80385-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Spinal motoneurons in the zebrafish were classified using morphological criteria. Dorsomedial white motoneurons which innervate the fast, glycolytic white muscle fiber compartment were distinguished from ventrolateral red and intermediate motoneurons which innervate the slow, oxidative, red and intermediate muscle fiber compartments. Synapses on cell somata and cell organelles were studied in detail. The motoneurons which innervate white muscle fibers (W motoneurons) are considerably larger than those which innervate red and intermediate muscle fibers (RI motoneurons; W > RI). Significant differences were also found in the size of the nucleus (W > RI) and in the ratio size nucleus/size soma (W < RI); small differences were found regarding endoplasmic reticulum (W > RI) and mitochondria (W < RI). There were no differences in synaptic apposition length or percentage of terminals with flat vesicles. Small differences were discerned with regard to covering percentages (W < RI) and percentage of terminals with round vesicles (W > RI). Terminals with dense cored vesicles appeared on W motoneuron somata only. Within the motoneuron population, there was a positive correlation between the coverage of terminals containing flat vesicles and the perimeter of the cell soma. In RI motoneurons, there was a positive correlation between the perimeter of the cell and the amount of endoplasmic reticulum. A negative correlation was found between the RI cell perimeter and mitochondria, which is in line with a high succinate dehydrogenase activity in small cells.
Collapse
Affiliation(s)
- E van Asselt
- Department of Experimental Zoology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
14
|
Brännström T. Quantitative synaptology of functionally different types of cat medial gastrocnemius alpha-motoneurons. J Comp Neurol 1993; 330:439-54. [PMID: 8468413 DOI: 10.1002/cne.903300311] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The aim of this ultrastructural investigation was to study quantitatively the synaptology of the cell bodies and dendrites of cat medial gastrocnemius (MG) alpha-motoneurons of functionally different types. In electrophysiologically classified and intracellularly HRP-labelled MG alpha-motoneurons of the FF (fast twitch, fatigable), FR (fast twitch, fatigue resistant) and S (slow twitch, very fatigue resistant) types, the synaptic covering of the soma as well as that of dendritic segments located within 100 microns and at 300, 700, and 1,000 microns distance, respectively from the soma, was analyzed. The synaptic boutons were classified into the L-(apposition length > 4 microns) and S-types (< 4 microns) with spherical synaptic vesicles, and the F-type with flat or pleomorphic synaptic vesicles. The length of apposition towards the motoneuron membrane was measured for each bouton profile. Approximately 1,000 boutons contacted the soma and a similar number of boutons contacted the proximal dendrites within 50 microns from the soma. The number of dendritic boutons was larger at the 300 microns distance than at the 100 and 700 microns distances. The three types of motoneurons showed similar values for percentage synaptic covering and synaptic packing density in the proximal dendrites, while in the most distal dendritic regions the S motoneurons had more than 50% higher values for percentage covering, packing density and total number of boutons. The S motoneurons also exhibited a larger preponderance of F-type boutons on the soma. The ratio between the F- and S-types of boutons decreased somatofugally along the dendrites in the type FF and FR motoneurons, while in the S motoneurons it remained fairly constant.
Collapse
Affiliation(s)
- T Brännström
- Department of Anatomy, University of Umeå, Sweden
| |
Collapse
|
15
|
Birinyi A, Antal M, Wolf E, Székely G. The Extent of the Dendritic Tree and the Number of Synapses in the Frog Motoneuron. Eur J Neurosci 1992; 4:1003-1012. [PMID: 12106406 DOI: 10.1111/j.1460-9568.1992.tb00127.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Frog motoneurons were intracellularly labelled with cobaltic lysine in the brachial and the lumbar segments of the spinal cord, and the material was processed for light microscopy in serial sections. With the aid of the neuron reconstruction system NEUTRACE, the dendritic tree of neurons was reconstructed and the length and surface area of dendrites measured. The surface of somata was determined with the prolate - oblate average ellipsoid calculation. Corrections were made for shrinkage and for optical distortion. The mean surface area of somata was 6710 microm2; lumbar motoneurons were slightly larger than brachial motoneurons. The mean length of the combined dendritic tree of brachial neurons was 29 408 microm and that of lumbar neurons 46 806 microm. The mean surface area was 127 335 microm2 in brachial neurons, and 168 063 microm2 in lumbar neurons. The soma - dendrite surface area ratio was 3 - 5% in most cases. Dendrites with a diameter of </= 1.0 microm constituted approximately 75% of the combined dendritic length in most of the neurons. Unlike in the cat, there was no correlation between the size of stem dendrites and the extent of daughter branches. From the synaptic density estimated in earlier electron microscope investigations of frog motoneuron dendrites (Antal et al., J. Neurocytol., 15, 303 - 310, 1986; 21, 34 - 49, 1992), and from the present data, the number of synapses on the dendritic tree was calculated. The calculations indicated 26 949 synapses on the smallest and 61 519 synapses on the largest neuron if the synaptic density was multiplied by the length of the dendritic tree. If the synaptic density was multiplied by the surface area of the dendritic tree the calculation yielded 23 337 synapses for the smallest and 60 682 synapses for the largest neuron. More than 60% of the combined surface area of dendrites was >600 microm from the soma. This suggests that about two-thirds of the synapses impinged upon distant dendrites >600 microm from the soma. The efficacy of synapses at these large distances is investigated on model neurons in the accompanying paper (Wolf et al., Eur. J. Neurosci., 4 1013 - 1021, 1992).
Collapse
Affiliation(s)
- A. Birinyi
- Department of Anatomy, University Medical School, H-4012, Debrecen, Hungary
| | | | | | | |
Collapse
|
16
|
Destombes J, Horcholle-Bossavit G, Thiesson D, Jami L. Alpha and gamma motoneurons in the peroneal nuclei of the cat spinal cord: an ultrastructural study. J Comp Neurol 1992; 317:79-90. [PMID: 1573058 DOI: 10.1002/cne.903170106] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to investigate whether ultrastructural features can be used as a guide to identify alpha- and gamma-motoneurons among the intermediate-size neurons of the peroneal motor nuclei. The peroneus brevis and peroneus tertius muscles of adult cats were injected with horseradish peroxidase, and motoneurons labeled by retrograde axonal transport were examined by electron microscopy. In both nuclei, the distributions of cell-body diameters, measured in the light microscope, were bimodal covering the range of 28-84 microns, with a trough around 50 microns. The sample of 25 motoneurons selected for the ultrastructural study included not only large (presumed alpha) and small (presumed gamma) neurons but also intermediate-size cell bodies with diameters in the 40-60 microns range. For each motoneuron, 2-5 profiles were reconstructed from ultrathin sections taken at 6-8 microns intervals. Synaptic boutons were counted and their lengths of apposition were measured. On the basis of three criteria, namely: (1) bouton types present on the membrane, (2) percentage of membrane length covered by synapses, and (3) the aspect of the nucleolus, all the examined motoneurons, including those with intermediate sizes, fell into one of two categories. Fourteen motoneurons, with cell-body diameters in a range of 55-84 microns, were contacted by all types of boutons (mainly S-type with spherical vesicles, F-type with flattened vesicles, and C-type with subsynaptic cistern); the synaptic covering of the somatic membrane was over 40% and the nucleus contained a vacuolated nucleolus. These were considered alpha-motoneurons. Eleven motoneurons, with only S and F boutons, a synaptic covering under 30%, a compact nucleolus and a cell-body diameter ranging between 28 and 50 microns, were considered gamma-motoneurons. No other combination of the three criteria was observed. These results show that unequivocal distinction of alpha- and gamma-motoneurons is possible in the peroneal nuclei, on the basis of morphological differences independent of cell-body size.
Collapse
Affiliation(s)
- J Destombes
- CNRS URA 1448, Laboratoire de Neurophysiologie, Collège de France, Paris
| | | | | | | |
Collapse
|
17
|
Antal M, Kraftsik R, Székely G, van der Loos H. Synapses on motoneuron dendrites in the brachial section of the frog spinal cord: a computer-aided electron microscopic study of cobalt-filled cells. JOURNAL OF NEUROCYTOLOGY 1992; 21:34-49. [PMID: 1738005 DOI: 10.1007/bf01206896] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cobalt-labelled motoneuron dendrites of the frog spinal cord at the level of the second spinal nerve were photographed in the electron microscope from long series of ultrathin sections. Three-dimensional computer reconstructions of 120 dendrite segments were analysed. The samples were taken from two locations: proximal to cell body and distal, as defined in a transverse plane of the spinal cord. The dendrites showed highly irregular outlines with many 1-2 microns-long 'thorns' (on average 8.5 thorns per 100 microns 2 of dendritic area). Taken together, the reconstructed dendrite segments from the proximal sites had a total length of about 250 microns; those from the distal locations, 180 microns. On all segments together there were 699 synapses. Nine percent of the synapses were on thorns, and many more close to their base on the dendritic shaft. The synapses were classified in four groups. One third of the synapses were asymmetric with spherical vesicles; one half were symmetric with spherical vesicles; and one tenth were symmetric with flattened vesicles. A fourth, small class of asymmetric synapses had dense-core vesicles. The area of the active zones was large for the asymmetric synapses (median value 0.20 microns 2), and small for the symmetric ones (median value 0.10 microns 2), and the difference was significant. On average, the areas of the active zones of the synapses on thin dendrites were larger than those of synapses on large calibre dendrites. About every 4 microns 2 of dendritic area received one contact. There was a significant difference between the areas of the active zones of the synapses at the two locations. Moreover, the number per unit dendritic length was correlated with dendrite calibre. On average, the active zones covered more than 4% of the dendritic area; this value for thin dendrites was about twice as large as that of large calibre dendrites. We suggest that the larger active zones and the larger synaptic coverage of the thin dendrites compensate for the longer electrotonic distance of these synapses from the soma.
Collapse
Affiliation(s)
- M Antal
- Department of Anatomy, University Medical School, Debrecen, Hungary
| | | | | | | |
Collapse
|
18
|
Rose PK, Neuber-Hess M. Morphology and frequency of axon terminals on the somata, proximal dendrites, and distal dendrites of dorsal neck motoneurons in the cat. J Comp Neurol 1991; 307:259-80. [PMID: 1856325 DOI: 10.1002/cne.903070208] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purpose of the present study was to compare the frequency of different classes of axon terminals on selected regions of the somatodendritic surface of dorsal neck motoneurons. Single motoneurons supplying neck extensor muscles were antidromically identified and intracellularly stained with horseradish peroxidase. By using light microscopic reconstructions as a guide, axon terminals on the somata, proximal dendrites (within 250 microns of the soma), and distal dendrites (more than 540 microns from the soma) were examined at the electron microscopic level. Axon terminals were divided into several classes based on the shape, density, and distribution of their synaptic vesicles. The proportion of axon terminals belonging to each axon terminal class was similar on the somata and proximal dendrites. However, there were major shifts in the relative frequency of most classes of axon terminals on the distal dendrites. The most common classes of axon terminals on the somata and proximal dendrites contained clumps of either spherical or pleomorphic vesicles. These types of axon terminals accounted for more than 60% of the axon terminals on these regions. In contrast, only 11% of the axon terminals found on distal dendrites belonged to these types of axon terminals. The most commonly encountered axon terminal on distal dendrites contained a dense collection of uniformly distributed spherical vesicles. These types of axon terminals accounted for 40% of all terminals on the distal dendrites, but only 5-7% of the axon terminals on the somata and proximal dendrites. Total synaptic density on each of the three regions examined was similar. However, the percentage of membrane in contract with axon terminals was approximately four times smaller on distal dendrites than somata or proximal dendrites. Axon terminals (regardless of type) were usually larger on somata and proximal dendrites than distal dendrites. These results indicate that there are major differences in the types and arrangement of axon terminals on the proximal and distal regions of dorsal neck motoneurons and suggest that afferents from different sources may preferentially contact proximal or distal regions of the dendritic trees of these cells.
Collapse
Affiliation(s)
- P K Rose
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
19
|
Pullen AH. Quantitative synaptology of feline motoneurones to external anal sphincter muscle. J Comp Neurol 1988; 269:414-24. [PMID: 3372721 DOI: 10.1002/cne.902690308] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Motoneurones innervating the cat external anal sphincter muscle were labelled retrogradely following intramuscular injections with horseradish peroxidase (HRP). Labelled motoneurones were examined by correlative light and electron microscopy (LM and EM) with special regard to a qualitative and morphometric analysis of the axon terminals resident on the neuronal membrane. By LM, labelled motoneurones were (1) ipsilateral to the injections; (2) all in S1-S2; (3) found only in the superior dorsomedial region of Onuf's nucleus; and (4) exhibited a broad spectrum of diameters (25-72 micron, mean 47.4 +/- 11.3 micron). By EM, axon terminals on the neuronal membrane when classified according to size, vesicle shape, and synaptic complex ultrastructure conformed to the S-, F-, T-, M-, and C-type terminals previously described for cat lumbosacral motoneurones. C-terminals confirmed these sphincteric motoneurones to be skeletomotor. Pooled data from midnuclear sections through 15 random labelled motoneurones (20-64-micron diameter) revealed that S- and F-type terminals predominated, with numerically few M and C types. Notwithstanding their low frequency (0.3/100 micron membrane) C-terminals contributed 1% of the mean areal coverage by terminals, which implies a potentially larger synaptic influence relative to other terminal types. Linear relationships occurred between terminal frequency (or cover) and motoneurone diameter. While motoneurones greater than 40 micron in diameter exhibited all five terminal types, labelled motoneurones less than or equal to 30 micron generally possessed only S-, F-, and occasional T-type terminals, and in this respect resembled gamma motoneurones.
Collapse
Affiliation(s)
- A H Pullen
- Sobell Department of Neurophysiology, Institute of Neurology, London, England
| |
Collapse
|
20
|
Abstract
The motoneuron part of this review deals with the changes in recruitment and firing rates of the motor unit types upon changes from a physically inactive life to endurance or strength training. The muscle fibers react to prolonged exercise by adaptation to a higher level of performance. A matter of discussion is the prerequisites for a transformation between the basic muscle fiber types, slow twitch and fast twitch, during voluntary (transsynaptic) activity, which is demonstrated after artificial nerve stimulation. The review includes current knowledge of muscle fiber transformation as an adaptive response to increased usage either by electrical stimulation or by transsynaptic neuronal activity. The metabolic adaptation related to increased endurance is reviewed with special reference to effects on muscle fibers. The increase in strength as a result of high resistance training is mainly the result of increased muscle cross-section. Whether this is solely the result of an increase in size of individual fibers or an increased fiber number is a controversial matter.
Collapse
|
21
|
Lagerbäck PA, Kellerth JO. Light microscopic observations on cat Renshaw cells after intracellular staining with horseradish peroxidase. II. The cell bodies and dendrites. J Comp Neurol 1985; 240:368-76. [PMID: 3880356 DOI: 10.1002/cne.902400405] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cell bodies and dendritic trees of five lumbosacral Renshaw cells of adult cats were studied in the light microscope (LM) after intracellular injection with horseradish peroxidase (HRP). The cell bodies were all located in the ventral part of lamina VII. The dendrites extended up to 0.7 mm from the cell body into the neighbouring parts of laminae VIII and IX as well as into more dorsal parts of lamina VII. The dendritic branching was sparse and about half the dendrites were unbranched. The mean diameter of the cell body was positively correlated to both the combined and mean diameters of the first-order dendrites. Between four and eight dendrites originated from the cell bodies. The number of dendritic end-branches, the combined dendritic length, the mean dendritic length from the cell body to the termination of the end branches, the distance from the cell body to the termination of the most remote end-branch, the dendritic surface area, and the dendritic volume all correlated positively with the diameter of the parent first-order dendrite. The dendritic tapering was somewhat more pronounced in the Renshaw cells than previously observed in alpha- and gamma-motoneurons. The present data are discussed in relation to previous morphological observations on Renshaw cells and alpha- and gamma-motoneurons.
Collapse
Affiliation(s)
- P A Lagerbäck
- Department of Anatomy, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
22
|
Lagerbäck PA. An ultrastructural study of cat lumbosacral gamma-motoneurons after retrograde labelling with horseradish peroxidase. J Comp Neurol 1985; 240:256-64. [PMID: 4067010 DOI: 10.1002/cne.902400304] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Twelve retrogradely horseradish peroxidase (HRP)-labelled triceps surae motoneurons of gamma size (mean cell body diameter less than 38 micron) were studied ultrastructurally. The contours of the cell bodies, as observed in the transverse midnucleolus plane, were elongated to rounded. The axons identified all originated from the cell body. The mean diameter of the stem dendrites was 4.5 micron. A substantial part of the cell membrane was covered by glial extensions. The boutons and synaptic contacts apposing the gamma-motoneurons could be classified into two categories on the basis of the type of synaptic vesicles: S-type boutons with spherical synaptic vesicles and F-type boutons with flattened vesicles. In each neuron, the values for mean length and mean area of apposition, percentage synaptic covering, and packing density of S-type, F-type, and S+F-type boutons were estimated on the cell body and in two dendritic compartments. In comparison with alpha-motoneurons and Renshaw cells, the cell bodies of the gamma-motoneurons were covered by smaller and strikingly fewer boutons of both the S- and F-types. The values for percentage synaptic covering and packing density of boutons on the proximal dendrites were also lower for gamma-motoneurons than for both alpha-motoneurons and Renshaw cells, although the differences were less pronounced than on the cell body. No boutons of the C-, M-, and T-types described for alpha-motoneurons were found on the gamma-motoneurons.
Collapse
|
23
|
Pullen AH. A structured program in BASIC for cell morphometry: its application to the spinal motoneurone. J Neurosci Methods 1984; 12:155-78. [PMID: 6396455 DOI: 10.1016/0165-0270(84)90015-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The BASIC program developed for use on an RML380Z computer collects, sorts, corrects and analyzes counts of organelle number, and measurements of membrane length and profile area. These fundamental parameters are used to derive intermediate parameters and their interrelationships are examined. Data input routines permit either measurements obtained from a digitizer tablet or the use of non-automated methods. A main program controls overall program flow and discrete sub-programs implement data input, data checking, derivation of parameters and analyses. The program is applied here to analyses of motoneurone synaptology, but with simple adaptation may be used to analyze other cell types.
Collapse
|
24
|
Abstract
The synaptology of alpha-motoneurons innervating the anterior and posterior latissimus dorsi muscle (ALD and PLD) in the chicken was studied electron microscopically. These motoneurons were identified by means of retrograde transport of horseradish peroxidase injected into each muscle. Presynaptic boutons on their somata and dendrites were classified as S, F, C and M types, fundamentally similar to those previously reported in the monkey, cat and rat. Besides them, the presynaptic terminals which contained dense-cored vesicles, designated as the G type collectively for practical purposes, were newly found on both the somata and dendrites of chicken alpha-motoneurons and divided into five subtypes characterized by the presence of: (1) elongated-cored vesicles and flattened clear vesicles; (2) small spherical-cored vesicles (the range of diameter, 55-100 nm) and spherical clear vesicles; (3) middle-sized spherical-cored vesicles (60-120 nm) concomitant with spherical clear vesicles; (4) large spherical cored vesicles (85-145 nm) with a few spherical clear vesicles; and (5) cored vesicles of various shapes and sizes intermingled with tubular structures with dense content in them. The frequent occurrence of the G-type boutons on alpha-motoneurons in the chickens as compared with the rat, cat or monkey may suggest that the somatic motor activity in the chicken is modulated by neuropeptides and/or biogenic amines more than in the mammals.
Collapse
|
25
|
Goshgarian HG, Rafols JA. The ultrastructure and synaptic architecture of phrenic motor neurons in the spinal cord of the adult rat. JOURNAL OF NEUROCYTOLOGY 1984; 13:85-109. [PMID: 6707715 DOI: 10.1007/bf01148320] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although light microscopic studies have analysed phrenic motor neurons in several different species, there has never been an ultrastructural investigation of identified phrenic motor neurons. In addition, electrophysiological studies have raised questions relating to the function of phrenic motor neurons which may be answered only by direct electron microscopic investigation. Thus, the present study was carried out to provide a detailed ultrastructural analysis of identified phrenic motor neurons. Phrenic motor neurons in the spinal cord of the rat were labelled by retrogradely transported horseradish peroxidase (HRP) after transecting the phrenic nerve in the neck and applying the enzyme directly to the central stump of the transected nerve. The results showed that the general ultrastructural characteristics of phrenic motor neurons were similar to those previously reported for other spinal motor neurons. However, phrenic primary dendrites appeared to be isolated from all other dendritic profiles in the neuropil. Primary dendrites were not fasciculated. Fasciculation occurred only among the more distal secondary and tertiary phrenic dendritic branches. Direct dendrodendritic or dendrosomatic apposition was rarely seen; gap junctions between directly apposing phrenic neuronal membranes were not observed. The membranes of adjacent phrenic neuronal profiles were most frequently separated by intervening sheaths of astroglial processes. Myelinated phrenic axons and a phrenic axon collateral were identified. The initial portion of the phrenic axon collateral was cone-shaped, lacked myelin, and thus resembled a miniature axon hillock. In one instance, a large accumulation of polyribosomes was observed within the hillock-like structure of a phrenic axon collateral. Eight morphological types of synaptic boutons, M, P, NFs, S, NFf, F, G and C were classified according to criteria used by previous investigators. Most of these endings (M, NFs, NFf, S and F) made synaptic contact with profiles of labelled phrenic somata and dendrites. F, NFf, and S boutons also terminated on phrenic axon hillocks. C and G boutons contacted exclusively phrenic somata and small calibre dendrites, respectively. P boutons established axo-axonic synaptic contacts with the M and NFs bouton. The morphological findings of the present study provide new data that may be related to phrenic synchronized output and presynaptic inhibition of primary afferents terminating on phrenic motor neurons.
Collapse
|