1
|
Nandakumar B, Blumenthal GH, Pauzin FP, Moxon KA. Hindlimb Somatosensory Information Influences Trunk Sensory and Motor Cortices to Support Trunk Stabilization. Cereb Cortex 2021; 31:5165-5187. [PMID: 34165153 DOI: 10.1093/cercor/bhab150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Sensorimotor integration in the trunk system is poorly understood despite its importance for functional recovery after neurological injury. To address this, a series of mapping studies were performed in the rat. First, the receptive fields (RFs) of cells recorded from thoracic dorsal root ganglia were identified. Second, the RFs of cells recorded from trunk primary sensory cortex (S1) were used to assess the extent and internal organization of trunk S1. Finally, the trunk motor cortex (M1) was mapped using intracortical microstimulation to assess coactivation of trunk muscles with hindlimb and forelimb muscles, and integration with S1. Projections from trunk S1 to trunk M1 were not anatomically organized, with relatively weak sensorimotor integration between trunk S1 and M1 compared to extensive integration between hindlimb S1/M1 and trunk M1. Assessment of response latency and anatomical tracing suggest that trunk M1 is abundantly guided by hindlimb somatosensory information that is derived primarily from the thalamus. Finally, neural recordings from awake animals during unexpected postural perturbations support sensorimotor integration between hindlimb S1 and trunk M1, providing insight into the role of the trunk system in postural control that is useful when studying recovery after injury.
Collapse
Affiliation(s)
- Bharadwaj Nandakumar
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | - Gary H Blumenthal
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | | | - Karen A Moxon
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA.,Center for Neuroscience, Davis, 95618 CA, USA
| |
Collapse
|
2
|
Abstract
The spinal cord receives, relays and processes sensory information from the periphery and integrates this information with descending inputs from supraspinal centres to elicit precise and appropriate behavioural responses and orchestrate body movements. Understanding how the spinal cord circuits that achieve this integration are wired during development is the focus of much research interest. Several families of proteins have well-established roles in guiding developing spinal cord axons, and recent findings have identified new axon guidance molecules. Nevertheless, an integrated view of spinal cord network development is lacking, and many current models have neglected the cellular and functional diversity of spinal cord circuits. Recent advances challenge the existing spinal cord axon guidance dogmas and have provided a more complex, but more faithful, picture of the ontogenesis of vertebrate spinal cord circuits.
Collapse
|
3
|
White JM, Lee HJ, Malone P, DeWeerth SP, Tansey KE. Temporal and spatial dynamics of spinal sensorimotor processing in an intersegmental cutaneous nociceptive reflex. J Neurophysiol 2019; 122:616-631. [PMID: 31166824 DOI: 10.1152/jn.00146.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cutaneus trunci muscle (CTM) reflex produces a skin "shrug" in response to pinch on a rat's back through a three-part neural circuit: 1) A-fiber and C-fiber afferents in segmental dorsal cutaneous nerves (DCNs) from lumbar to cervical levels, 2) ascending propriospinal interneurons, and 3) the CTM motoneuron pool located at the cervicothoracic junction. We recorded neurograms from a CTM nerve branch in response to electrical stimulation. The pulse trains were delivered at multiple DCNs (T6-L1), on both sides of the midline, at two stimulus strengths (0.5 or 5 mA, to activate Aδ fibers or Aδ and C fibers, respectively) and four stimulation frequencies (1, 2, 5, or 10 Hz) for 20 s. We quantified both the temporal dynamics (i.e., latency, sensitization, habituation, and frequency dependence) and the spatial dynamics (spinal level) of the reflex. The evoked responses were time-windowed into Early, Mid, Late, and Ongoing phases, of which the Mid phase, between the Early (Aδ fiber mediated) and Late (C fiber mediated) phases, has not been previously identified. All phases of the response varied with stimulus strength, frequency, history, and DCN level/side stimulated. In addition, we observed nociceptive characteristics like C fiber-mediated sensitization (wind-up) and habituation. Finally, the range of latencies in the ipsilateral responses were not very large rostrocaudally, suggesting a myelinated neural path within the ipsilateral spinal cord for at least the A fiber-mediated Early-phase response. Overall, these results demonstrate that the CTM reflex shares the temporal dynamics in other nociceptive reflexes and exhibits spatial (segmental and lateral) dynamics not seen in those reflexes.NEW & NOTEWORTHY We have physiologically studied an intersegmental reflex exploring detailed temporal, stimulus strength-based, stimulation history-dependent, lateral and segmental quantification of the reflex responses to cutaneous nociceptive stimulations. We found several physiological features in this reflex pathway, e.g., wind-up, latency changes, and somatotopic differences. These physiological observations allow us to understand how the anatomy of this reflex may be organized. We have also identified a new phase of this reflex, termed the "mid" response.
Collapse
Affiliation(s)
- Jason M White
- Department of Biomedical Engineering, Georgia Institute of Technology-Emory University, Atlanta, Georgia
| | - Hyun Joon Lee
- Department of Physiology, Emory University, Atlanta, Georgia.,Department of Neurology, Emory University, Atlanta, Georgia
| | - Patrick Malone
- Department of Physiology, Emory University, Atlanta, Georgia.,Department of Neurology, Emory University, Atlanta, Georgia
| | - Stephen P DeWeerth
- Department of Biomedical Engineering, Georgia Institute of Technology-Emory University, Atlanta, Georgia.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Keith E Tansey
- Department of Physiology, Emory University, Atlanta, Georgia.,Department of Neurology, Emory University, Atlanta, Georgia.,Spinal Cord Injury Clinic, Atlanta Department of Veterans Affairs Medical Center, Atlanta, Georgia
| |
Collapse
|
4
|
Zampieri N, Jessell TM, Murray AJ. Mapping sensory circuits by anterograde transsynaptic transfer of recombinant rabies virus. Neuron 2014; 81:766-78. [PMID: 24486087 DOI: 10.1016/j.neuron.2013.12.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2013] [Indexed: 01/14/2023]
Abstract
Primary sensory neurons convey information from the external world to relay circuits within the CNS, but the identity and organization of the neurons that process incoming sensory information remains sketchy. Within the CNS, viral tracing techniques that rely on retrograde transsynaptic transfer provide a powerful tool for delineating circuit organization. Viral tracing of the circuits engaged by primary sensory neurons has, however, been hampered by the absence of a genetically tractable anterograde transfer system. In this study, we demonstrate that rabies virus can infect sensory neurons in the somatosensory system, is subject to anterograde transsynaptic transfer from primary sensory to spinal target neurons, and can delineate output connectivity with third-order neurons. Anterograde transsynaptic transfer is a feature shared by other classes of primary sensory neurons, permitting the identification and potentially the manipulation of neural circuits processing sensory feedback within the mammalian CNS.
Collapse
Affiliation(s)
- Niccolò Zampieri
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Columbia University, New York, NY 10032 USA
| | - Thomas M Jessell
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Columbia University, New York, NY 10032 USA.
| | - Andrew J Murray
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Columbia University, New York, NY 10032 USA
| |
Collapse
|
5
|
SAD kinases sculpt axonal arbors of sensory neurons through long- and short-term responses to neurotrophin signals. Neuron 2013; 79:39-53. [PMID: 23790753 DOI: 10.1016/j.neuron.2013.05.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 11/20/2022]
Abstract
Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A, and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here, we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short-duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short-duration signals from extrinsic cues to sculpt axon arbors within the CNS.
Collapse
|
6
|
Fabri M, Polonara G, Mascioli G, Paggi A, Salvolini U, Manzoni T. Contribution of the corpus callosum to bilateral representation of the trunk midline in the human brain: an fMRI study of callosotomized patients. Eur J Neurosci 2006; 23:3139-48. [PMID: 16820004 DOI: 10.1111/j.1460-9568.2006.04823.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human brain studies have shown that the cutaneous receptors of trunk regions close to the midline are represented in the first somatosensory cortex (SI) of both hemispheres. The present study aims to establish whether in humans, as in non-human primates, the bilateral representation of the trunk midline in area SI depends on the corpus callosum. Data were obtained from eight callosotomized patients: three with complete callosal resection, one with a partial posterior resection including the splenium and the callosal trunk, and four with partial anterior resections sparing the splenium and in one case also the posterior part of the callosal trunk. The investigation was carried out with functional magnetic resonance imaging. Unilateral tactile stimulation was applied by rubbing ventral trunk regions close to the midline (about 20 x 10 cm in width) with a soft cotton pad (frequency 1 Hz). Cortical activation foci elicited by unilateral stimulation of cutaneous regions adjacent to the midline were detected in the contralateral post-central gyrus (PCG), in a region corresponding to the trunk ventral midline representation zone of area SI, as described in a previous study of intact subjects. In most patients, activation foci were also found in the ipsilateral PCG, again as in subjects with an intact corpus callosum. The data confirm that the skin regions adjacent to the trunk midline are represented bilaterally in SI, and indicate that ipsilateral activation is at least partially independent of the corpus callosum.
Collapse
Affiliation(s)
- M Fabri
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università Politecnica delle Marche, Via Tronto 10/A, 60020 Ancona, Torrette, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Fabri M, Polonara G, Salvolini U, Manzoni T. Bilateral cortical representation of the trunk midline in human first somatic sensory area. Hum Brain Mapp 2005; 25:287-96. [PMID: 15827999 PMCID: PMC6871704 DOI: 10.1002/hbm.20099] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cortical representation of the trunk zone in the human first somatosensory area was studied with functional magnetic resonance imaging (fMRI) to establish whether the cutaneous regions close to the midline are represented in this area of both hemispheres. Cortical activation foci evoked by unilateral tactile stimulation of ventral trunk regions were detected in the postcentral gyrus of the contralateral hemisphere slightly medial to or just behind the omega-shaped region of the central sulcus and in the anterior bank of the postcentral sulcus. These regions probably correspond to the trunk ventral midline representation zones of areas 3a-3b and 1-2, respectively. Stimulation of cutaneous regions adjacent to the midline evoked activation foci also in the ipsilateral postcentral gyrus in regions symmetrical to those activated in the contralateral hemisphere. These data demonstrate that in humans, as in nonhuman primates, the cutaneous regions adjacent to the trunk midline are represented bilaterally in the first somatic sensory cortex. Whether the ipsilateral activation depends on callosal or extracallosal inputs remains to be elucidated.
Collapse
Affiliation(s)
- Mara Fabri
- Department of Neuroscience, Section of Physiology, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | |
Collapse
|
8
|
Ritter AM, Woodbury CJ, Davis BM, Albers K, Koerber HR. Excess target-derived neurotrophin-3 alters the segmental innervation of the skin. Eur J Neurosci 2001; 14:411-8. [PMID: 11553291 DOI: 10.1046/j.0953-816x.2001.01654.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is thought that dermatomes are established during development as a result of competition between afferents of neighbouring segments. Mice that overexpress neurotrophins in the skin provide an interesting model to test this hypothesis, as they possess increased numbers of sensory neurons, and display hyperinnervation of the skin. When dermatomal boundaries were mapped in adult mice, it was found that those in nerve growth factor and brain-derived neurotrophic factor overexpressers were indistinguishable from wild-type animals but that overlap between adjacent segments was greatly reduced in neurotrophin-3 (NT-3) overexpressers. However, dermatomes in heterozygous NT-3 knockout mice displayed no more overlap than wild-types. In order to quantify differences across strains, innervation territories of thoracic dorsal cutaneous nerves were mapped and measured in adult mice. Overlap between adjacent dorsal cutaneous nerves was normal in nerve growth factor overexpressing mice, but much reduced in NT-3 overexpressers. However, this restriction was not reflected in the central projection of the dorsal cutaneous nerve, creating a mismatch between peripheral and central projections. Dorsal cutaneous nerve territories were also mapped in neonatal mice aged postnatal day 7-8. In neonates, nerve territories of NT-3 overexpressers overlapped less than wild-types, but in neonates of both strains the amount of overlap was much greater than in the adult. These results indicate that substantial separation of dermatomes occurs postnatally, and that excess NT-3 enhances this process, resulting in more restricted dermatomes. It may exert its effects either by enhancing competition, or by direct effects on the stability and formation of sensory endings in the skin.
Collapse
Affiliation(s)
- A M Ritter
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA.
| | | | | | | | | |
Collapse
|
9
|
Central anatomy of individual rapidly adapting low-threshold mechanoreceptors innervating the ?hairy? skin of newborn mice: Early maturation of hair follicle afferents. J Comp Neurol 2001. [DOI: 10.1002/cne.1069] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Knott GW, Kitchener PD, Saunders NR. Development of motoneurons and primary sensory afferents in the thoracic and lumbar spinal cord of the South American opossum Monodelphis domestica. J Comp Neurol 1999; 414:423-36. [PMID: 10531537 DOI: 10.1002/(sici)1096-9861(19991129)414:4<423::aid-cne1>3.0.co;2-j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The postnatal development of the primary sensory afferent projection to the thoracic (T4) and lumbar (L4) spinal cord of the marsupial species Monodelphis domestica was studied by using anterograde and retrograde neuronal tracers. Large numbers of primary afferents and motoneurons were labelled by application of the carbocyanine dye DiI into individual dorsal root ganglia (DRG) afferents in short-term organ cultures. Dorsal root axons had entered the cord at birth, but most primary afferent innervation of the grey matter and the establishment of cytoarchitectural lamination occurs postnatally. In addition to ipsilateral projections, some primary afferents that projected to the dorsal horn extended across the midline into the equivalent contralateral regions of the grey matter. Similarly, motoneuron dendrites occasionally extended across midline and into the contralateral grey matter. The first fibres innervating the spinal cord project to the ventral horn and formed increasingly complex terminal arbours in the motor columns between P1 and P7. After P5 many afferents were seen projecting to the dorsal horn, with the superficial dorsal horn being the last region of the spinal grey to be innervated. Histochemical labelling with the lectin Griffonia simplicifolia indicated that C fibre primary afferents had arborised in the superficial dorsal horn by P14. The sequence of primary afferent innervation is thus similar to that described in the rat, but this sequence occurs over a period of several weeks in Monodelphis, compared with several days in the rat.
Collapse
Affiliation(s)
- G W Knott
- Institut de Biologie Cellulaire et de Morphologie, Université de Lausanne, Lausanne 1005, Switzerland.
| | | | | |
Collapse
|
11
|
Mirnics K, Koerber HR. Prenatal development of rat primary afferent fibers: II. Central projections. J Comp Neurol 1995; 355:601-14. [PMID: 7636034 DOI: 10.1002/cne.903550409] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
These studies were designed to determine the pattern of initial afferent fiber ingrowth into the prenatal spinal gray matter and the establishment of the topographic organization of the presynaptic neuropil in the dorsal horn. A total of 113 lumbar dorsal root ganglia were labeled with carbocyanine fluorescent dye DiI or DiA in 67 rat embryos and neonatal pups aged embryonic day 13 to postnatal day 0 (E13-P0). The initial fiber penetration of the lumbar spinal gray began at E15 and was restricted to the segments of entry. Subsequent growth of fibers into gray matter of adjacent segments began approximately one day later, and this delay was continued, about one day for each successive segment. A second wave of ingrowth of putative small-diameter afferents into the substantia gelatinosa began at E19 and also displayed the same rostrocaudal delay. Fiber ingrowth was specific and occupied the somatotopic area appropriate for the adult, from the earliest stages (E18) in which dorsal horn laminae could be adequately defined. The somatotopic organization of the presynaptic neuropil in laminae III and IV did not change significantly throughout embryonic development as the amount of overlap between adjacent and non-adjacent ganglion projections remained constant throughout embryonic development. In addition, it was found that fibers innervating the proximal and distal hindlimb entered the spinal gray simultaneously at E15 before the innervation of the distal toes was established. The results of these studies indicate that the somatotopic organization of the presynaptic neuropil is established very early in development and requires little refinement to match that seen in the adult. The simultaneous penetration of the fibers originating from the proximal and distal areas of the limb before innervation is complete suggests that this ingrowth may be independent of the establishment of specific peripheral connections.
Collapse
Affiliation(s)
- K Mirnics
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pennsylvania 15261, USA
| | | |
Collapse
|
12
|
Gladfelter WE, Millecchia RJ, Pubols LM, Sonty RV, Ritz LA, Covalt-Dunning D, Culberson J, Brown PB. Crossed receptive field components and crossed dendrites in cat sacrocaudal dorsal horn. J Comp Neurol 1993; 336:96-105. [PMID: 8254116 DOI: 10.1002/cne.903360108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The hypothesis that sacrocaudal dorsal horn neurons with crossed receptive field components on the tail have dendrites which cross to the contralateral dorsal horn was tested in a combined electrophysiological and morphological study. Dorsal horn cells in the sacrocaudal spinal cord of anesthetized cats were penetrated with horseradish peroxidase-filled microelectrodes. After mapping their low threshold mechanoreceptive fields, cells were iontophoretically injected with horseradish peroxidase. A sample of 16 well-stained cells was obtained in laminae III and IV. Cells with receptive fields crossing the dorsal midline of the tail (n = 8) had somata in the lateral ipsilateral dorsal horn, and some of these cells (5/8) had dendrites which crossed to the lateral contralateral dorsal horn. Cells with receptive fields spanning the ventral midline (n = 2) were located near the center of the fused dorsal horn, and one of these had bilateral dendrites in this region. Cells with receptive fields on the lateral tail, crossing neither the dorsal nor the ventral midline (n = 6), had cell bodies in the middle of the ipsilateral dorsal horn; half had only ipsilateral dendrites, and half had crossed dendritic branches. Although the relationship between cell receptive field (RF) location (RF center, expressed as distance from tips of toes) and mediolateral location of the cell body was statistically significant, the correlation between crossed RF components and crossed dendritic branches was not significant.
Collapse
Affiliation(s)
- W E Gladfelter
- Department of Physiology, West Virginia University, Morgantown 26506
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Guillemot JP, Richer L, Ptito M, Guilbert M, Lepore F. Somatosensory receptive field properties of corpus callosum fibres in the raccoon. J Comp Neurol 1992; 321:124-32. [PMID: 1613134 DOI: 10.1002/cne.903210111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Anatomical studies in a number of species have shown that most areas of the somatosensory cortex are callosally interconnected. This is also true for the raccoon, at least for those parts representing proximal and axial body regions. Electrophysiologically, studies carried out in cats and monkeys have demonstrated that all sensory sub-modalities cross in the callosum. Moreover, cells representing the paws and fingers, though occupying a large portion of areas SI and SII, seem to send proportionately fewer axons through the callosum than axial structures. No comparable study has been carried out in the raccoon. The purpose of the present experiment was therefore to investigate the functional organization of the callosal system in this animal by examining the receptive field properties of the somatosensory fibres crossing in the callosum. Axonal activity was recorded directly through tungsten microelectrodes in the corpus callosum of eight raccoons. Results indicated that somatosensory information is transmitted in its rostral portion. Most receptive fields concerned axial and proximal body regions and the head and face. Some receptive fields represented para-axial regions of the body and a few concerned the hands and fingers. Slowly and rapidly adapting fibres were found, as were all the sensory sub-modalities tested. A substantial proportion of the axons had bilateral receptive fields. These results are discussed in relation to those obtained in other species, with particular reference to: (1) the midline fusion hypothesis of callosal function; (2) the representation within this structure of the distal extremities, and (3) the origin of the bilateral receptive fields.
Collapse
Affiliation(s)
- J P Guillemot
- Département de Kinanthropologie, Université du Québec, Montréal, Canada
| | | | | | | | | |
Collapse
|
14
|
Marfurt CF, Rajchert DM. Trigeminal primary afferent projections to "non-trigeminal" areas of the rat central nervous system. J Comp Neurol 1991; 303:489-511. [PMID: 1706735 DOI: 10.1002/cne.903030313] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The central projections of rat trigeminal primary afferent neurons to various "non-trigeminal" areas of the central nervous system were examined by labeling the fibers with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) transported anterogradely from the trigeminal ganglion. This technique produced a clear and comprehensive picture of trigeminal primary afferent connectivity that was in many ways superior to that which may be obtained by using degeneration, autoradiography, cobalt labeling, or HRP transganglionic transport techniques. Strong terminal labeling was observed in all four rostrocaudal subdivisions of the trigeminal brainstem nuclear complex, as well as in the dorsal horn of the cervical spinal cord bilaterally, numerous brainstem nuclei, and in the cerebellum. Labeling in the ipsilateral dorsal horn of the cervical spinal cord was very dense at C1, moderately dense at C2 and C3, and sparse at C4-C7. Numerous fibers crossed the midline in the medulla and upper cervical spinal cord and terminated in the contralateral pars caudalis and dorsal horn of the spinal cord from C1-C5. The latter axons terminated most heavily in the mandibular and ophthalmic regions of the contralateral side. Extremely dense terminal labeling was observed in the ipsilateral paratrigeminal nucleus and the nucleus of the solitary tract, moderate labeling was seen in the supratrigeminal nucleus and in the dorsal reticular formation, and small numbers of fibers were observed in the cuneate, trigeminal motor, lateral and superior vestibular nuclei, and in the cerebellum. The latter fibers entered the cerebellum in the superior cerebellar peduncle and projected to the posterior and anterior lobes as well as to the interposed and lateral deep cerebellar nuclei. Most projections in this study originated from fibers in the dorsal part of the spinal tract of V, suggesting a predominantly mandibular origin for these fibers. Projections from the ophthalmic and maxillary divisions, in contrast, were directed mainly to the cervical spinal cord bilaterally, to contralateral pars caudalis, and to certain areas of the reticular formation. In conclusion, this study has demonstrated that somatosensory information from the head and face may be transmitted directly to widespread and functionally heterogeneous areas of the rat central nervous system, including the spinal cord dorsal horn, numerous brainstem nuclei, and the cerebellum.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C F Marfurt
- Northwest Center for Medical Education, Indiana University School of Medicine, Gary 46408
| | | |
Collapse
|
15
|
Abstract
The cutaneus trunci muscle reflex in guinea pigs was studied with a combination of video analysis, electromyography, lesioning, and light microscopy. The muscle forms a bilateral, subdermal sheet over much of the trunk. Local contractions of the dorsal part of the muscle are produced in response to brief tactile or electrical stimulation of the skin and consist of a twitch centered 1-2 cm rostral of the stimulus site. The reflex receptive field covers most of the thoracic and lumbar dorsal surface. The sensory information is carried via segmental dorsal cutaneous nerves. Receptive fields of adjacent nerves overlap and form rectangular areas perpendicular to the midline, at thoracic levels. Motor innervation projects through the lateral thoracic nerves of the brachial plexus. The motoneurons are located near the cervical thoracic junction (C7-T1). Lesions of the lower thoracic cord indicate that ascending sensory information is carried to the motor nuclei via the ventral half of the lateral funiculus. This pathway conveys information primarily from ipsilateral skin. There is a weaker input from contralateral skin, crossing at segmental levels. Electromyographic responses to brief electrical stimulation of lower thoracic skin occur usually as 10-12 msec bursts at latencies of 10-20 msec, and do not readily habituate or fatigue at stimulus frequencies below 10 Hz. The reflex persists under light pentobarbital anesthesia. This combination of characteristics makes the reflex useful for a variety of physiological and pathophysiological studies.
Collapse
Affiliation(s)
- A R Blight
- Center for Paralysis Research, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
16
|
Petit D, Lepore F, Picard N, Guillemot JP. Bilateral receptive fields in cortical area SII: contribution of the corpus callosum and other interhemispheric commissures. Somatosens Mot Res 1990; 7:97-112. [PMID: 2378194 DOI: 10.3109/08990229009144701] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The corpus callosum contributes to the interhemispheric transfer of somatosensory information. Since the somatosensory pathways are essentially crossed, a number of studies have postulated that the corpus callosum may be responsible for the presence of bilateral receptive fields (RFs) in cortical area SII. Moreover, subcortical structures, as well as some of the other commissures, may also contribute to the bilateral nature of these cells. In order to assess the relative importance of the corpus callosum, this study compared the RF properties of cells in area SII of callosum-sectioned cats to normal cats, using single-cell recordings. Results showed that the corpus callosum makes an important contribution to the bilateral activation of cells in SII, since the proportion of cells with bilateral RFs found in callosum-sectioned cats was less than half that obtained in normal cats. The decrease in the proportion of bilateral RFs was found for all body regions with the exception of the face. However, the substantial number of bilateral RFs remaining in callosotomized cats indicates that this structure is not the sole contributor to the bilateral activation of cells in SII. In order to determine whether this residual bilateral activation might be mediated by the other interhemispheric commissures, a group of cats was subjected, besides the callosotomy, to the additional transection of their subcortical commissures, including the anterior, posterior, habenular, and intertectal commissures, as well as the massa intermedia. When this group of deep-split cats was compared to the callosotomized group, the results indicated that the contribution of the other commissures to bilateral activation is negligible, since approximately the same proportion of bilateral RFs was encountered in the two groups. The relative importance of the callosal contribution to bilateral RFs of different body regions is discussed with respect to the roles commonly attributed to this structure.
Collapse
Affiliation(s)
- D Petit
- Département de Kinanthropologie, Université du Québec, Montréal, Canada
| | | | | | | |
Collapse
|
17
|
Ritz LA, Brown PB, Bailey SM. Crossed and uncrossed projections to cat sacrocaudal spinal cord: I. Axons from cutaneous receptors. J Comp Neurol 1989; 289:284-93. [PMID: 2808767 DOI: 10.1002/cne.902890208] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intra-axonal recording and horseradish peroxidase staining techniques were used to map terminal fields of primary afferent fibers from cutaneous receptors within the cat sacrocaudal spinal cord. It was hypothesized that projection patterns of cutaneous afferent fibers mirror the known somatotopic organization of sacrocaudal dorsal horn cells. Forty-three primary afferent fibers, innervating either slowly adapting type I receptors, hair follicles, or slowly adapting type II receptors, all on the tail, were recovered. All collaterals (N = 372) branched from parent axons in the dorsal columns. Most collaterals coursed rostromedially to the ipsilateral gray matter, penetrated the medial dorsal horn, and arborized within laminae III, IV, and to a lesser extent, V. Ipsilateral projections to dorsal horn were as follows: axons with dorsal or dorsolateral receptive fields (RFs; n = 20) to the lateral portion, axons with lateral RFs (n = 4) to the central portion, and axons with ventral or ventro-lateral RFs (n = 19) to the medial portion. Most axons (16 of 20) with dorsal or dorsolateral RFs also had contralateral projections to lateral dorsal horn and most axons (15 of 19) with ventral or ventrolateral RFs also had contralateral projections to medial dorsal horn. No axons with lateral RFs had crossed projections. These data represent the first complete mapping of the somatotopic organization of primary afferent fiber projection patterns to a spinal cord level. The findings demonstrate that ipsilateral projection patterns of sacrocaudal primary afferent fibers are in register with the somatotopic organization of the dorsal horn. Our earlier suggestion that crossed projections of primary afferent fibers give rise to crossed components of dorsal horn RFs spanning the midline is supported by these results.
Collapse
Affiliation(s)
- L A Ritz
- Department of Neurological Surgery, University of Florida College of Medicine, Gainesville 32610
| | | | | |
Collapse
|
18
|
Manzoni T, Barbaresi P, Conti F, Fabri M. The callosal connections of the primary somatosensory cortex and the neural bases of midline fusion. Exp Brain Res 1989; 76:251-66. [PMID: 2670598 DOI: 10.1007/bf00247886] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- T Manzoni
- Institute of Human Physiology, University of Ancona, Italy
| | | | | | | |
Collapse
|
19
|
Davis BM, Frank E, Johnson FA, Scott SA. Development of central projections of lumbosacral sensory neurons in the chick. J Comp Neurol 1989; 279:556-66. [PMID: 2918087 DOI: 10.1002/cne.902790405] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The development of central projections of sensory neurons in lumbosacral dorsal root ganglia (DRGs) was examined by using horseradish peroxidase labeling techniques in chick embryos from stage 23 (E4) to stage 39 (E13). Our results show that primary afferents reach the spinal cord by stage 23. Afferent axons extend in the primordium of the dorsal funiculus for several segments rostral and caudal to their segment of entry for over 24 hours before invading the gray matter at stage 28 (E6). Sensory fibers grow into the vicinity of motoneuron dendrites by stage 32 (E7.5), about the time that reflexes and apparent monosynaptic EPSPs can first be elicited. Dense projections into the dorsal laminae of the spinal cord, presumably representing cutaneous afferents, appear somewhat later, at about stage 39 (E13), when the segmental projection pattern begins to resemble the mature pattern.
Collapse
Affiliation(s)
- B M Davis
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60201
| | | | | | | |
Collapse
|
20
|
Ueyama T, Arakawa H, Mizuno N. Central distribution of efferent and afferent components of the pudendal nerve in rat. ANATOMY AND EMBRYOLOGY 1987; 177:37-49. [PMID: 3439636 DOI: 10.1007/bf00325288] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Central distribution of efferent and afferent components of the pudendal nerve was examined in the rat by the horseradish peroxidase (HRP) method after HRP application to the central cut end of the pudendal nerve. The pudendal motoneurons were located in the dorsolateral, dorsomedial and lateral groups at L5 and L6. Each of the dorsolateral and dorsomedial groups constituted a slender longitudinal cell column. Pudendal motoneurons in the lateral group were scattered at L5, rostrodorsally to the dorsolateral group. The neurons in the dorsolateral and lateral groups were labelled with HRP applied to the nerve branch innervating the ischiocavernosus and sphincter urethrae muscles. The neurons in the dorsomedial group were labelled with HRP applied to the branch supplying the sphincter ani externus and bulbospongiosus muscles. Some dendrites of pudendal motoneurons in the dorsomedial group extended to the contralateral dorsomedial group. These crossing dendrites were observed not only in male rats but also in female. The average number of the pudendal motoneurons in the dorsolateral and dorsomedial groups were larger in male rats than in female. A few neurons of the intermediolateral nucleus at upper L6 were also labelled with HRP applied to the dorsalis penis (clitoridis) nerve. Axon terminals of the pudendal nerve were distributed, bilaterally with an ipsilateral predominance, to the gracile nucleus, as well as to the dorsal horn and dorsal commissural gray from L4 to S2. A few labelled axons were seen in the intermediolateral nucleus at L6 and S1. Axon terminals from the dorsalis penis nerve were distributed more medially in the dorsal horn than those from the perinealis nerve.
Collapse
Affiliation(s)
- T Ueyama
- Department of Anatomy (2nd Division), Kansai Medical University, Osaka, Japan
| | | | | |
Collapse
|