Schmidt A, Roth G. Differentiation processes in the amphibian brain with special emphasis on heterochronies.
INTERNATIONAL REVIEW OF CYTOLOGY 1996;
169:83-150. [PMID:
8843653 DOI:
10.1016/s0074-7696(08)61985-3]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amphibians and caecilians exhibit a great variety of adult morphologies, life histories, and developmental strategies (biphasic development, direct development, viviparity, and neoteny). While early brain development and the differentiation of neural tissues in the three amphibian orders follow a basic pattern, differences exist in the onset and offset as well as the rate of growth and differentiation processes. These differences are described within a phylogenetic framework, and special emphasis is laid on the relationship between altered ontogenies and phylogenetic diversity. We concentrate on ontogenetic differentiation processes in the motor, olfactory, and visual system. We discuss the morphological consequences of secondary simplification of the brain in the context of paedomorphosis, which has happened several times independently among amphibians and consists in the abbreviation or truncation of late developmental processes. We deal with the cellular and molecular basis of brain development and the consequences for the adult nervous system in representative species of the three amphibian orders. Our analysis reveals that differences in brain morphology are largely due to heterochrony (i.e., the desynchronization of ontogenetic processes), a phenomenon that in turn is related to changes in genome sizes and life histories.
Collapse