1
|
Derby CD, Caprio J. What are olfaction and gustation, and do all animals have them? Chem Senses 2024; 49:bjae009. [PMID: 38422390 DOI: 10.1093/chemse/bjae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 03/02/2024] Open
Abstract
Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity. The terms olfaction and gustation have also often been applied to the invertebrates, though not based on homology. Consequently, any similarities between olfaction and gustation in the vertebrates and invertebrates have resulted from convergent adaptations or shared constraints during evolution. The untidiness of assigning olfaction and gustation to invertebrates has led some to recommend abandoning the use of these terms and instead unifying them and others into a single category-chemical sense. In our essay, we compare the nature of the chemical senses of diverse animal types and consider their designation as olfaction, oral gustation, extra-oral gustation, or simply chemoreception. Properties that we have found useful in categorizing chemical senses of vertebrates and invertebrates include the nature of peripheral sensory cells, organization of the neuropil in the processing centers, molecular receptor specificity, and function.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
2
|
Lindsey BW, Di Donato S, Kaslin J, Tropepe V. Sensory-specific modulation of adult neurogenesis in sensory structures is associated with the type of stem cell present in the neurogenic niche of the zebrafish brain. Eur J Neurosci 2014; 40:3591-607. [PMID: 25231569 DOI: 10.1111/ejn.12729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/08/2014] [Accepted: 08/20/2014] [Indexed: 01/15/2023]
Abstract
Teleost fishes retain populations of adult stem/progenitor cells within multiple primary sensory processing structures of the mature brain. Though it has commonly been thought that their ability to give rise to adult-born neurons is mainly associated with continuous growth throughout life, whether a relationship exists between the processing function of these structures and the addition of new neurons remains unexplored. We investigated the ultrastructural organisation and modality-specific neurogenic plasticity of niches located in chemosensory (olfactory bulb, vagal lobe) and visual processing (periventricular grey zone, torus longitudinalis) structures of the adult zebrafish (Danio rerio) brain. Transmission electron microscopy showed that the cytoarchitecture of sensory niches includes many of the same cellular morphologies described in forebrain niches. We demonstrate that cells with a radial-glial phenotype are present in chemosensory niches, while the niche of the caudal tectum contains putative neuroepithelial-like cells instead. This was supported by immunohistochemical evidence showing an absence of glial markers, including glial fibrillary acidic protein, glutamine synthetase, and S100β in the tectum. By exposing animals to sensory assays we further illustrate that stem/progenitor cells and their neuronal progeny within sensory structures respond to modality-specific stimulation at distinct stages in the process of adult neurogenesis - chemosensory niches at the level of neuronal survival and visual niches in the size of the stem/progenitor population. Our data suggest that the adult brain has the capacity for sensory-specific modulation of adult neurogenesis and that this property may be associated with the type of stem cell present in the niche.
Collapse
Affiliation(s)
- Benjamin W Lindsey
- Australian Regenerative Medicine Institute, Monash University Clayton Campus, Clayton, Vic., Australia
| | | | | | | |
Collapse
|
3
|
Lindsey BW, Tropepe V. Changes in the social environment induce neurogenic plasticity predominantly in niches residing in sensory structures of the zebrafish brain independently of cortisol levels. Dev Neurobiol 2014; 74:1053-77. [PMID: 24753454 DOI: 10.1002/dneu.22183] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 11/07/2022]
Abstract
The social environment is known to modulate adult neurogenesis. Studies in mammals and birds have shown a strong correlation between social isolation and decreases in neurogenesis, whereas time spent in an enriched environment has been shown to restore these deficits and enhance neurogenesis. These data suggest that there exists a common adaptive response among neurogenic niches to each extreme of the social environment. We sought to further test this hypothesis in zebrafish, a social species with distinct neurogenic niches within primary sensory structures and telencephalic nuclei of the brain. By examining stages of adult neurogenesis, including the proliferating stem/progenitor population, their surviving cohort, and the resulting newly differentiated neuronal population, we show that niches residing in sensory structures are most sensitive to changes in the social context, and that social isolation or novelty are both capable of decreasing the number of proliferating cells while increasing the number of newborn neurons within a single niche. Contrary to observations in rodents, we demonstrate that social novelty, a form of enrichment, does not consistently rescue deficits in cell proliferation following social isolation, and that cortisol levels do not negatively regulate changes in adult neurogenesis, but are correlated with the social context. We propose that enhancement or suppression of adult neurogenesis in the zebrafish brain under different social contexts depends largely on the type of niche (sensory or telencephalic), experience from the preceding social environment, and occurs independently of changes in cortisol levels.
Collapse
Affiliation(s)
- Benjamin W Lindsey
- Department of Cell and Systems Biology, University of Toronto, Ontario, M5S 3G5, Canada
| | | |
Collapse
|
4
|
Denil NA, Yamashita E, Kirino M, Kiyohara S. Recurrent facial taste neurons of sea catfish Plotosus japonicus: morphology and organization in the ganglion. JOURNAL OF FISH BIOLOGY 2013; 82:1773-1788. [PMID: 23731136 DOI: 10.1111/jfb.12058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/18/2012] [Indexed: 06/02/2023]
Abstract
This study investigated the morphology of the recurrent facial taste neurons and their organization in the recurrent ganglion of the sea catfish Plotosus japonicus. The recurrent ganglion is independent of the anterior ganglion, which consists of trigeminal, facial and anterior lateral line neurons that send peripheral fibres to the head region. The recurrent taste neurons are round or oval and bipolar, with thick peripheral and thin central fibres, and completely wrapped by membranous layers of satellite cells. Two peripheral nerve branches coursing to the trunk or pectoral fin originate from the recurrent ganglion. The results presented here show that the trunk and pectoral-fin neurons are independently distributed to form various sizes of groups, and the groups are intermingled throughout the ganglion. No distinct topographical relationship of the two nerve branches occurs in the ganglion. Centrally, the trunk and pectoral-fin branches project somatotopically in the anterolateral and intermediate medial regions of the trunk tail lobule of the facial lobe, respectively.
Collapse
Affiliation(s)
- N A Denil
- Graduate School of Science and Engineering, Department of Chemistry and BioScience, Kagoshima University, Kagoshima, Japan.
| | | | | | | |
Collapse
|
5
|
|
6
|
Kiyohara S, Sakata Y, Yoshitomi T, Tsukahara J. The 'goatee' of goatfish: innervation of taste buds in the barbels and their representation in the brain. Proc Biol Sci 2002; 269:1773-80. [PMID: 12350264 PMCID: PMC1691091 DOI: 10.1098/rspb.2002.2086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Goatfish use a pair of large chin barbels to probe the sea bottom to detect buried prey. The barbels are studded with taste buds but little else is known about the neural organization of this system. We found that the taste buds of the barbel are innervated in a strict orthogonal fashion. The barbel is innervated by a main nerve trunk running in the core of the barbel. A longitudinal nerve bundle originates from the main trunk and, after running a short distance distally, divides into two circumferential nerve bundles (CNB) extending respectively, medially and laterally around the barbel. Approximately 15 CNBs innervate each 1 mm length of barbel. At each transverse level, the CNB innervates two clusters of taste buds, each containing 14 end-organs. The primary taste centre in the brain is similarly extraordinary. The sensory inputs from the barbel terminate in a derived dorsal facial lobe, which has a highly convoluted surface forming a multitude of tubercles. Electrophysiological mapping experiments show that the entire barbel is somatotopically represented in a recurved elongate tubular fashion within the dorsal facial lobe.
Collapse
Affiliation(s)
- Sadao Kiyohara
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan.
| | | | | | | |
Collapse
|
7
|
Weissburg MJ, Derby CD, Johnson O, McAlvin B, Moffett JM. Transsexual limb transplants in fiddler crabs and expression of novel sensory capabilities. J Comp Neurol 2001; 440:311-20. [PMID: 11745626 DOI: 10.1002/cne.1388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We used transsexual limb transplants in fiddler crabs to examine how peripheral sensory structures interact with the central nervous system (CNS) to produce a sexually dimorphic behavior. Female and male chemosensory feeding claws were transplanted onto male hosts in place of nonfeeding, nonchemosensory claws. Successfully transplanted claws retain donor morphologies and contain chemosensory neurons. Neurons in successfully transplanted female feeding claws express the enhanced sensitivity to chemical cues seen in female, but not male, neurons in claws of normal animals. When chemically stimulated, the transplanted claws evoke feeding behavior not observed in normal males, even though the sensory neurons in the transplanted limb project to the host's sexually dimorphic neuropil not known to receive chemosensory input. Behavioral sensitivity is directly related to the sensitivity of peripheral neurons in the transplanted feeding claw. Thus, the interactions between peripheral neurons and their targets may restructure the CNS so that novel sensory capabilities are expressed, and this can produce sexually dimorphic behaviors.
Collapse
Affiliation(s)
- M J Weissburg
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
8
|
Kiyohara S, Yamashita S, Lamb CF, Finger TE. Distribution of trigeminal fibers in the primary facial gustatory center of channel catfish, Ictalurus punctatus. Brain Res 1999; 841:93-100. [PMID: 10546992 DOI: 10.1016/s0006-8993(99)01785-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies in several fishes including catfish, have shown that primary trigeminal nerve (NV) axons terminate not only in the principal and spinal trigeminal nuclei, but in the facial (gustatory) lobes. The present study was undertaken to determine the extent and distribution of trigeminal terminations within the facial lobe (FL) and principal trigeminal nucleus (nVpr) in the channel catfish, Ictalurus punctatus. In order to reveal the distribution of trigeminal fibers, the carbocyanine dye, diI, was applied to the central cut stump of the trigeminal root in isolated, paraformaldehyde-fixed brains. After a diffusion period of 10-90 days, the brains were serially sectioned on a vibratome and examined with epifluorescence. The trigeminal motor nucleus (nVm) and principal sensory nucleus lie near the level of entrance of NV. The majority of primary trigeminal fibers, however, sweep caudally after entering into the brain to form the descending root. At the level of the caudal third of the FL, collaterals emitted by the descending root fibers turn medially and dorsally to terminate in the FL. The trigeminal fibers are coarser than the facial nerve (NVII) fibers which terminate within the same structure. The trigeminal fibers terminate throughout the FL except for the lateral-most lobule which contains the representation of taste buds innervated by the recurrent branch of NVII, i.e., those over the trunk and tail of the animal. These results show that in catfish, the trigeminal input to the primary gustatory complex is restricted to those portions of the nucleus receiving chemosensory inputs from the face and barbels, i.e., the trigeminally innervated sensory fields.
Collapse
Affiliation(s)
- S Kiyohara
- Department of Chemistry and BioScience, Faculty of Science, Kagoshima University, Japan.
| | | | | | | |
Collapse
|
9
|
Halsell CB, Travers SP. Anterior and posterior oral cavity responsive neurons are differentially distributed among parabrachial subnuclei in rat. J Neurophysiol 1997; 78:920-38. [PMID: 9307125 DOI: 10.1152/jn.1997.78.2.920] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The responses of single parabrachial nucleus (PBN) neurons were recorded extracellularly to characterize their sensitivity to stimulation of individual gustatory receptor subpopulations (G neurons, n = 75) or mechanical stimulation of defined oral regions (M neurons, n = 54) then localized to morphologically defined PBN subdivisions. Convergence from separate oral regions onto single neurons occurred frequently for both G and M neurons, but converging influences were more potent when they arose from nearby locations confined to the anterior (AO) or posterior oral cavity (PO). A greater number of G neurons responded optimally to stimulation of AO than to PO receptor subpopulations, and these AO-best G neurons had higher spontaneous and evoked response rates but were less likely to receive convergent input than PO-best G neurons. In contrast, proportions, response rates, and convergence patterns of AO- and PO-best M neurons were more comparable. The differential sensitivity of taste receptor subpopulations was reflected in PBN responses. AO stimulation with NaCl elicited larger responses than PO stimulation; the converse was true for QHCl stimulation. Within the AO, NaCl elicited a larger response when applied to the anterior tongue than to the nasoincisor duct. Hierarchical cluster analysis of chemosensitive response profiles suggested two groups of PBN G neurons. One group was composed of neurons optimally responsive to NaCl (N cluster); the other to HCl (H cluster). Most N- and H-cluster neurons were AO-best. Although they were more heterogenous, all but one of the remaining G neurons were unique in responding best or second-best to quinine and so were designated as quinine sensitive (Q+). Twice as many Q+ neurons were PO- compared with AO-best. M neurons were scattered across PBN subdivisions, but G neurons were concentrated in two pairs of subdivisions. The central medial and ventral lateral subdivisions contained both G and M neurons but were dominated by AO-best N-cluster G neurons. The distribution of G neurons in these subdivisions appeared similar to distributions in most previous studies of PBN gustatory neurons. In contrast to earlier studies, however, the external medial and external lateral-inner subdivisions also contained G neurons, intermingled with a comparable population of M neurons. Unlike cells in the central medial and ventral lateral subnuclei, nearly every neuron in the external subnuclei was PO best, and only one was an N-cluster cell. In conclusion, the present study supports a functional distinction between sensory input from the AO and PO at the pontine level, which may represent an organizing principle throughout the gustatory neuraxis. Furthermore, two morphologically distinct pontine regions containing orosensory neurons are described.
Collapse
Affiliation(s)
- C B Halsell
- Section of Oral Biology, The Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
10
|
Parallel medullary gustatospinal pathways in a catfish: possible neural substrates for taste-mediated food search. J Neurosci 1997. [PMID: 9169545 DOI: 10.1523/jneurosci.17-12-04873.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Taste and tactile fibers in the facial nerve of catfish innervate extraoral taste buds and terminate somatotopically in the facial lobe (FL)-a medullary structure crucial for gustatory-mediated food search. The present study was performed to determine the neural linkages between the gustatory input and the spinal motor output. Spinal injections of horseradish peroxidase (HRP) label spinopetal cells in the octaval nuclei, the nucleus of the medial longitudinal fasciculus, and reticulospinal neurons (Rsps) in the brainstem medial reticular formation (RF), including the Mauthner cell. A somatotopically organized, direct faciospinal system originating from superficial cells scattered in the lateral lobule of the facial lobe (ll) is also labeled. The brainstem reticulospinal cells are segmentally organized into 14 clusters within eight segments of the reticular formation and includes one cluster (RS5) directly ventral to the FL. Injections of HRP or fluorescent tracers into the medial lobule of the FL label a facioreticular projection terminating around the Rsps of RS5. DiI injections into this area of the RF retrogradely label deeply situated bipolar neurons, especially in the medial and intermediate lobules of the FL. Electrophysiological recordings in and around RS5 show units with large receptive fields and with responses to chemical and tactile stimulation. The FL projects to the spinal cord via two pathways: (1) a topographically organized direct faciospinal pathway, and (2) an indirect facioreticulospinal pathway in which reticular neurons process and integrate gustatory information before influencing spinal circuitry for motor control during food search.
Collapse
|
11
|
Weissburg MJ. Chemo- and mechanosensory orientation by crustaceans in laminar and turbulent flows: from odor trails to vortex streets. EXS 1997; 84:215-246. [PMID: 9415993 DOI: 10.1007/978-3-0348-8878-3_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Crustaceans use odor and fluid mechanical cues to extract information from their environment. These cues enable animals to find resources, orient to water currents, or escape predators. Because the properties of the fluid environment affect the transmission and structure of relevant signals, a better understanding of sensory and behavioral mechanisms will be aided by considering, at the same time, the hydrodynamic context of chemo- and mechanosensory behaviors. Crustaceans occupy aquatic habitats where flows range from almost completely laminar to nearly fully turbulent. The considerable scope of hydrodynamic properties is mirrored by equally extreme variations in the complexity of the signals entrained in these flows. Ambient noise and stochastic variation increase in increasingly energetic, turbulent conditions. The sensory and behavioral mechanisms of animals that orient in turbulent environments suggest that they have, in the course of evolution, been shaped by the flow properties. Here, sensory systems are geared to extract rapidly fluctuating signals against a noisy background. They sometimes have elaborate noise filtering mechanisms that enable the detection of rather coarse types of signal features to improve the signal-to-noise ratio. In contrast, the simpler and more predictable structure of signals carried in laminar flows may allow more accurate orientation and discrimination to occur, and free animals from the burden of supporting complex noise-filtering circuitry. Future comparative investigations of sensory physiology and behavior of animals in relation to their flow environment promise to increase our understanding of orientation by means of chemo- and mechanoperception.
Collapse
Affiliation(s)
- M J Weissburg
- School of Biology, Georgia Institute of Technology, Atlanta 30332-0230, USA
| |
Collapse
|
12
|
Kiyohara S, Caprio J. Somatotopic organization of the facial lobe of the sea catfish Arius felis studied by transganglionic transport of horseradish peroxidase. J Comp Neurol 1996; 368:121-35. [PMID: 8725297 DOI: 10.1002/(sici)1096-9861(19960422)368:1<121::aid-cne8>3.0.co;2-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To reveal the somatotopical organization of the facial lobe (FL), a primary medullary gustatory nucleus in the sea catfish Arius felis, the central projections of the peripheral rami of the facial nerve innervating taste buds located across the entire body surface and rostral oral regions were traced by means of horseradish peroxidase neurohistochemistry. The maxillary barbel, lateral mandibular barbel, medial mandibular barbel, and trunk-tail branches project to four different longitudinal columns (i.e., lobules) extending rostrocaudally in the FL. The trunk-tail lobule, which is located dorsolateral to the barbel lobules, lies in the anterior two-thirds of the FL. The tail is represented in a more rostral portion of the trunk-tail lobule than the trunk, indicating that the rostrocaudal trunk axis is represented in the trunk-tail lobule in a posteroanterior axis. The pectoral fin branch ends in an intermediate region of the FL, whereas the hyomandibular, ophthalmic, lower lip, upper lip, and palatine branches terminate in discrete regions of the caudal one-third of the FL. These results reveal a sharply defined somatotopical organization of the FL of Arius and support the hypothesis that the number and lengths of the barbel lobules within the FL of catfishes are directly related to the number and relative lengths of the barbels. An additional subcolumn, the intermediate nucleus of the FL (NIF), which develops in the medioventral region of the caudal two-thirds of the FL, receives projections in a diffuse somatotopical fashion from the barbels, lower lip, and palatine branches. Trigeminal fibers of the barbel and lower lip branches project in a somatotopic fashion to the FL. The present findings suggest that the FL of Arius is highly organized somatotopically to detect, by tropotaxis, precise spatial information concerning taste and tactile stimuli in the environment.
Collapse
Affiliation(s)
- S Kiyohara
- Department of Biology, College of Liberal Arts and Sciences, Kagoshima University, Japan.
| | | |
Collapse
|
13
|
Abstract
The second gustatory nucleus of teleost fishes receives ascending fibers from the primary gustatory center in the medulla and sends efferent fibers to several nuclei in the inferior lobe of the diencephalon. Similar to the corresponding parabrachial nucleus in birds and mammals, the secondary gustatory nucleus of catfish consists of several cytoarchitectonically distinct subnuclei which receive input from different portions of the primary gustatory nuclei. However, it is unclear how the subnuclear organization relates to the processing of gustatory information in the hindbrain and the subsequent transmission of that information to the forebrain. To determine whether cells within different subnuclei of the secondary gustatory nucleus of channel catfish project to different diencephalic targets, single cells were intracellularly labeled with biocytin. Three subnuclei have been identified in the secondary gustatory nucleus: a medial subnucleus spanning most of the rostrocaudal extent of the nucleus, a central subnucleus and a dorsal subnucleus, the latter two located in the rostrolateral portion of the complex. Cells throughout the secondary gustatory nucleus typically possessed similar collateral projections to several nuclei in the inferior lobe, although four of the six cells filled in the medial subnucleus projected only to nucleus centralis. The only apparent subnucleus-specific projection pattern involved cells at the rostral edge of the secondary gustatory nucleus and in the secondary visceral nucleus. Axons of these cells terminated only in restricted portions of nucleus lobobulbaris. These results suggest that efferents from different subnuclei of the secondary gustatory nucleus of catfish, like those of the parabrachial nucleus of birds and mammals, do not possess simple, topographical projections to target nuclei in the diencephalon.
Collapse
Affiliation(s)
- C F Lamb
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
14
|
Valentincic T, Caprio J. Consummatory feeding behavior to amino acids in intact and anosmic channel catfish Ictalurus punctatus. Physiol Behav 1994; 55:857-63. [PMID: 8022905 DOI: 10.1016/0031-9384(94)90071-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The entire sequence of feeding behavior patterns exhibited by intact and anosmic channel catfish to food extracts was also released by single amino acids. L-arginine (> 10(-6) M), L-alanine (> 10(-6) M), and L-proline (> 10(-4) M) were each highly effective at releasing consummatory behavior patterns, such as turning, increasing pumping of water across the gill arches, and biting-snapping. Swallowing required solid objects, whereas rhythmic movement of the hyoid was released by > 10(-2) M L-arginine alone. For the biting-snapping behavior, the number of bites depended upon both the number of eddies containing the amino acid above the behavioral threshold concentration and the amino acid applied. Multiple eddies of > 10(-3) M L-proline and L-alanine provoked up to 25 bites per test; however, the most effective stimulus for releasing biting-snapping behavior at low concentrations was L-arginine (behavioral threshold 3 x 10(-7) M). In comparison to 10(-4) M L-alanine and L-arginine, other amino acids were less effective stimuli.
Collapse
Affiliation(s)
- T Valentincic
- Department of Zoology and Physiology, Louisiana State University, Baton Rouge 70803-1725
| | | |
Collapse
|
15
|
Lamb CF, Caprio J. Taste and tactile responsiveness of neurons in the posterior diencephalon of the channel catfish. J Comp Neurol 1993; 337:419-30. [PMID: 8282850 DOI: 10.1002/cne.903370306] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many teleosts possess an enlargement of the ventral diencephalon called the inferior lobe. In ostariophysine species (e.g., carps and catfishes), this region receives ascending fibers from the primary and secondary gustatory centers in the hindbrain. Extracellular unit activity was recorded from identified nuclei in the inferior lobe of the channel catfish to characterize taste and tactile responsiveness from the different nuclei associated with gustatory projections. Taste responses (to amino acids and nucleotides) were recorded from units in the nucleus centralis (nCLI), nucleus lobobulbaris (caudal portion--nLB, rostrolateral portion--rl nLB, and parvicellular portion--nLBp), and lateral thalamic nucleus (nLT), supporting the proposed gustatory role for these nuclei. Tactile responsiveness was distinct between different nuclei in the caudal inferior lobe. Units from the nCLI and nLB had lower spontaneous activity than those from other nuclei, and typically had receptive fields including the whole extraoral body surface, ipsilaterally. Units from the rl nLB and nLBp had receptive fields, often including both oral and extraoral surfaces, bilaterally, but rl nLB receptive fields typically included the whole body, while those from nLBp units were often restricted to the head and mouth. The apparent electrophysiological distinction between these nuclei, combined with their different connectivity patterns, suggest that the gustatory nuclei in the inferior lobe of channel catfish are involved in various different sensory processing mechanisms.
Collapse
Affiliation(s)
- C F Lamb
- Department of Zoology and Physiology, Louisiana State University, Baton Rouge 70803-1725
| | | |
Collapse
|
16
|
Lazar G, Szabo T, Libouban S, Ravaille-Veron M, Toth P, Brändle K. Central projections and motor nuclei of the facial, glossopharyngeal, and vagus nerves in the mormyrid fish Gnathonemus petersii. J Comp Neurol 1992; 325:343-58. [PMID: 1447406 DOI: 10.1002/cne.903250303] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most of the information about the anatomy of the fish's cranial nerves was collected in the first two decades of this century. Experimental analysis of the VIIth, IXth, and Xth cranial nerves by modern tract tracing techniques started about 20 years ago. Several species have been investigated to date, including one species of Agnatha (Myxinoidea), two species of elasmobranchs, and species of some orders of Teleostei like Cyprinidae, Siluriformes, Perciformes, and Gadidae. The sensory and motor nuclei of the VIIth, IXth, and Xth cranial nerves of Gnathonemus petersii were studied by anterograde and retrograde axoplasmatic transport of horseradish peroxidase and cobaltous lysine complex. The sensory nuclei form a continuous column of cells in the brain stem extending caudal to the obex. The rostral one-fourth of this column is occupied by the overlapping terminals of the VIIth and IXth nerves. The vagus nerve has 5 roots. The first 4 of these innervate the gills and the fifth supplies viscera. Afferents from the gills terminate ipsilaterally rostral to the obex in topographic order and their terminal fields overlap. Viscerosensory fibers terminate ipsilaterally in the obex region and bilaterally in the commissural nucleus of Cajal. The facial motor nucleus is located rostral to the sensory nucleus. Facial motoneurons have pear-shaped and multipolar perikarya. Their axons form a rostrally directed knee before leaving the brain. The motoneurons of the IXth and Xth nerves have a common cell column. The vagal motoneurons form a periventricular, a medial, and an intermediate cell group rostral to the obex. In the obex region and also caudal to it, a lateral and a caudal group can be distinguished. Vagal motoneurons show a topographic arrangement that is similar to that of the sensory vagal projections. The majority of motoneurons have pear-shaped perikary and ventrolaterally oriented dendrites. In the caudal nucleus the dendrites extend dorsally and overlap the terminals of sensory fibers. The axons form a dorsolaterally directed arch before joining the sensory roots. Since G. petersii uses its electrosensory system primarily for detection of food, its gustatory system is less developed than in other fishes, which possess a large number of taste buds.
Collapse
Affiliation(s)
- G Lazar
- Department of Anatomy, University Medical School, Pécs, Hungary
| | | | | | | | | | | |
Collapse
|
17
|
Lamb CF, Caprio J. Convergence of oral and extraoral information in the superior secondary gustatory nucleus of the channel catfish. Brain Res 1992; 588:201-11. [PMID: 1382808 DOI: 10.1016/0006-8993(92)91576-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurons within the superior secondary gustatory nucleus (nGS) of the channel catfish were examined electrophysiologically for responses to mechanical and chemical stimulation of neural peripheral receptive fields (RFs). Of the 28 single units sampled, 18 had mechanosensory RFs on the extraoral epithelium, two had RFs within the oropharyngeal cavity, and eight had RFs that included both oral and extraoral surfaces. RF sizes varied from approximately 2 cm2 on the ipsilateral lips and barbels to the whole body surface, bilaterally. No obvious correlation existed between RF pattern and recording location within the nGS. Eight of the mechanosensory nGS units also responded to amino acid taste stimuli with thresholds from micromolar to millimolar concentrations. The convergence of oral and extraoral information within the nGS determined electrophysiologically was corroborated anatomically by HRP labeling experiments. Restricted HRP injections into each of the primary gustatory nuclei of the medulla, the vagal (VL) and facial (FL) lobes, labeled fibers that appeared to terminate diffusely throughout the nGS, and injections into different portions of the nGS retrogradely labeled cells in both the FL and VL. The present electrophysiological and neuroanatomical data distinguish the convergent gustatory representation within the nGS of the catfish from the highly specific somatotopic and viscerotopic sensory maps previously identified in the FL and VL, respectively.
Collapse
Affiliation(s)
- C F Lamb
- Department of Zoology and Physiology, Louisiana State University, Baton Rouge 70803-1725
| | | |
Collapse
|
18
|
Abstract
The taste system has multiple functions that are carried by three cranial nerves. It is now apparent that these functions cannot be accommodated by a single coding mechanism for taste quality. A current view emphasizes the likely existence of coding channels activated by specific sets of receptors.
Collapse
|
19
|
Frank ME, Hettinger TP, Mott AE. The sense of taste: neurobiology, aging, and medication effects. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1992; 3:371-93. [PMID: 1391417 DOI: 10.1177/10454411920030040401] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The sense of taste is an oral chemical sense in mammals that is involved in the choice of foods. Initial transduction of taste stimuli occurs in taste buds, which are distributed in four discrete fields in the oral cavity. Medications can affect the taste buds and ion channels in taste-bud cell membranes involved in stimulus transduction. The sense of taste gradually declines with aging, with bitter taste most affected. Neural circuits that mediate taste in primates include cranial nerves VII, IX, and X, the solitary nucleus in the brain stem, the ventroposteromedial nucleus of the thalamus, and the insular-opercular cortex. The central taste pathways process taste information about sweet, salty, sour, and bitter stimuli serially and in parallel. Medications associated with "metallic" dysgeusia and taste losses affect the taste system via unknown mechanisms.
Collapse
Affiliation(s)
- M E Frank
- Department of BioStructure and Function, School of Dental Medicine, University of Connecticut Health Center, Farmington 06030
| | | | | |
Collapse
|
20
|
Hayama T, Caprio J. Somatotopical organization of the intermediate nucleus of the facial lobe in the channel catfish, Ictalurus punctatus. Brain Res 1990; 516:137-40. [PMID: 2364276 DOI: 10.1016/0006-8993(90)90908-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurons in the intermediate nucleus of the facial lobe (nIF) in the channel catfish that respond to tactile stimulation of oral and/or extra-oral epithelia are somatotopically arranged. Neurons in rostrodorsal portions of the nIF responded to tactile stimulation or deflection of the ipsilateral barbels, whereas neurons arranged in a dorsoventral direction in caudoventral regions of the nIF had receptive fields on the ipsilateral lips and the oral cavity, respectively. Suppression of neuronal activity in response to tactile stimulation of the external skin and/or the oral cavity was indicated for some units. Taste responses were not observed.
Collapse
Affiliation(s)
- T Hayama
- Department of Zoology and Physiology, Louisiana State University, Baton Rouge 70803-1725
| | | |
Collapse
|