1
|
Reid GA, Darvesh S. Distribution of acetylcholinesterase in the hippocampal formation of the Atlantic white-sided dolphin (Lagenorhynchus acutus). J Comp Neurol 2021; 529:1029-1051. [PMID: 32779183 DOI: 10.1002/cne.25002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 11/11/2022]
Abstract
The cetacean hippocampal formation has been noted to be one of the smallest relative to brain size of all mammals studied. This region, comprised of the dentate gyrus, hippocampus proper, subiculum, presubiculum, parasubiculum and the entorhinal cortex, is important in learning, memory, and navigation. There have been a number of studies detailing the distribution of acetylcholinesterase (AChE) in the hippocampal formation of terrestrial mammals with the goal of gaining a greater understanding of some aspects of the cholinergic innervation to this region, as well as its parcellation. The present study was undertaken to describe the organization, cytoarchitecture, and distribution of AChE in the hippocampal formation of the Atlantic white-sided dolphin (AWSD) with the view to understand similarities and differences between this aquatic mammal and terrestrial mammals. Nissl-staining demonstrated cytoarchitecture of the hippocampal formation in the AWSD comparable to that reported in other cetaceans. In addition, the AWSD had a rich pattern of AChE staining that distinctly varied between regions and laminae. A number of differences in the distribution of AChE staining in areas comparable to those of terrestrial species reported suggested possible alterations in connectivity of this region. Overall, however, AChE-staining suggested that cholinergic innervation, neural pathways and function of the hippocampal formation of the AWSD is conserved, similar to other mammals.
Collapse
Affiliation(s)
- George Andrew Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Marine Animal Response Society, Halifax, Nova Scotia, Canada
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Basler L, Gerdes S, Wolfer DP, Slomianka L. Sampling the Mouse Hippocampal Dentate Gyrus. Front Neuroanat 2017; 11:123. [PMID: 29311853 PMCID: PMC5733054 DOI: 10.3389/fnana.2017.00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
Sampling is a critical step in procedures that generate quantitative morphological data in the neurosciences. Samples need to be representative to allow statistical evaluations, and samples need to deliver a precision that makes statistical evaluations not only possible but also meaningful. Sampling generated variability should, e.g., not be able to hide significant group differences from statistical detection if they are present. Estimators of the coefficient of error (CE) have been developed to provide tentative answers to the question if sampling has been “good enough” to provide meaningful statistical outcomes. We tested the performance of the commonly used Gundersen-Jensen CE estimator, using the layers of the mouse hippocampal dentate gyrus as an example (molecular layer, granule cell layer and hilus). We found that this estimator provided useful estimates of the precision that can be expected from samples of different sizes. For all layers, we found that a smoothness factor (m) of 0 generally provided better estimates than an m of 1. Only for the combined layers, i.e., the entire dentate gyrus, better CE estimates could be obtained using an m of 1. The orientation of the sections impacted on CE sizes. Frontal (coronal) sections are typically most efficient by providing the smallest CEs for a given amount of work. Applying the estimator to 3D-reconstructed layers and using very intense sampling, we observed CE size plots with m = 0 to m = 1 transitions that should also be expected but are not often observed in real section series. The data we present also allows the reader to approximate the sampling intervals in frontal, horizontal or sagittal sections that provide CEs of specified sizes for the layers of the mouse dentate gyrus.
Collapse
Affiliation(s)
- Lisa Basler
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland.,Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
| | - Stephan Gerdes
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - David P Wolfer
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich, ETH Zürich, Zürich, Switzerland.,Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Lutz Slomianka
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland.,Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Localization of pre- and postsynaptic cholinergic markers in rodent forebrain: a brief history and comparison of rat and mouse. Behav Brain Res 2010; 221:356-66. [PMID: 21129407 DOI: 10.1016/j.bbr.2010.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
Abstract
Rat and mouse models are widely used for studies in cognition and pathophysiology, among others. Here, we sought to determine to what extent these two model species differ for cholinergic and cholinoceptive features. For this purpose, we focused on cholinergic innervation patterns based on choline acetyltransferase (ChAT) immunostaining, and the expression of muscarinic acetylcholine receptors (mAChRs) detected immunocytochemically. In this brief review we first place cholinergic and cholinoceptive markers in a historic perspective, and then provide an overview of recent publications on cholinergic studies and techniques to provide a literature survey of current research. Next, we compare mouse (C57Bl/J6) and rat (Wistar) cholinergic and cholinoceptive systems simultaneously stained, respectively, for ChAT (analyzed qualitatively) and mAChRs (analyzed qualitatively and quantitatively). In general, the topographic cholinergic innervation patterns of both rodent species are highly comparable, with only considerable (but region specific) differences in number of detectable cholinergic interneurons, which are more numerous in rat. In contrast, immunolabeling for mAChRs, detected by the monoclonal antibody M35, differs markedly in the forebrain between the two species. In mouse brain, basal levels of activated and/or internalized mAChRs (as a consequence of cholinergic neurotransmission) are significantly higher. This suggests a higher cholinergic tone in mouse than rat, and hence the animal model of choice may have consequences for cholinergic drug testing experiments.
Collapse
|
4
|
van Groen T, Miettinen P, Kadish I. The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus 2003; 13:133-49. [PMID: 12625464 DOI: 10.1002/hipo.10037] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The origin and the terminations of the projections from the entorhinal cortex to the hippocampal formation of the mouse (C57BL/6J strain) have been studied using anterogradely and retrogradely transported tracers. The entorhinal cortex is principally divided into two areas, the lateral entorhinal area (LEA) and the medial entorhinal area (MEA). LEA is the origin of the lateral perforant path that terminates in the outer one-third of the molecular layer of the dentate gyrus, and MEA is the origin of the medial perforant path that ends in the middle one-third of the molecular layer of the dentate gyrus. This projection is mostly to the ispsilateral dentate gyrus; only a few labeled axons and terminals are found in the contralateral dentate gyrus. The projection to the dentate gyrus originates predominantly from neurons in layer II of the entorhinal cortex. The entorhinal cortex also projects to CA3 and CA1 and to subiculum; in both CA3 and CA1, the terminals are present in stratum lacunosum-moleculare, whereas in the subiculum the terminals are in the outer part of the molecular layer. The projection from the entorhinal cortex to CA3, CA1, and subiculum is bilateral, and it originates predominantly from neurons in layer III, but a small number of neurons in the deeper layers of the entorhinal cortex contributes to this projection. The projection of entorhinal cortex to the hippocampus is topographically organized, neurons in the lateral part of both LEA and MEA project to the dorsal part (i.e., septal pole) of the hippocampus, whereas the projection to the ventral (i.e., temporal pole) hippocampus originates from neurons in medial parts of the entorhinal cortex.
Collapse
Affiliation(s)
- Thomas van Groen
- Department of Neuroscience and Neurology, University of Kuopio, Kuopio, Finland.
| | | | | |
Collapse
|
5
|
Abstract
We studied the differences between mice and rats in lesion-induced sprouting in the hippocampus. The entorhinal cortex was unilaterally lesioned with ibotenic acid in adult, female mice and rats. Four weeks later the subsequent axonal sprouting in the dentate gyrus was analysed, by measuring the density of the synaptophysin immunohistochemical and acetylcholinesterase histochemical staining in the termination area of the entorhinal cortex axons. The data demonstrate that both mice and rats display a significantly increased density of staining for synaptophysin and acetylcholinesterase in the molecular layer of the dentate gyrus, indicative of axonal sprouting. Both species also show an upregulation in the density of staining for acetylcholinesterase in the molecular layer of the dentate gyrus. Further, rats, but not mice, show a significant upregulation of synaptophysin staining in stratum lacunosum moleculare of CA1 following the lesions. However, whereas rats show significant shrinkage of the molecular layer of the dentate gyrus, mice do not show any shrinkage of that layer following entorhinal cortex lesions. Taken together, these data indicate that whereas the process of reinnervation in the hippocampus is similar between the mouse and the rat, the hippocampal response to denervation shows clear differences between these two species.
Collapse
Affiliation(s)
- I Kadish
- Department of Neuroscience and Neurology, University of Kuopio, FIN 70211 Kuopio, Finland
| | | |
Collapse
|
6
|
Aznavour N, Mechawar N, Descarries L. Comparative analysis of cholinergic innervation in the dorsal hippocampus of adult mouse and rat: a quantitative immunocytochemical study. Hippocampus 2002; 12:206-17. [PMID: 12000119 DOI: 10.1002/hipo.1108] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To obtain quantitative data on the distribution of the acetylcholine (ACh) innervation in the dorsal hippocampus of adult mouse (C57/B6) and rat (Sprague-Dawley), a semicomputerized method was used to measure the length of immunostained axons in hippocampal sections processed for light microscopic immunocytochemistry with a highly sensitive antibody against choline acetyltransferase (ChAT). The results could be expressed in density of axons (meters per mm3) for the different layers and regions of dorsal hippocampus (CA1, CA3, DG), and also in density of axon varicosities (millions per mm3), after having determined the average number of varicosities per unit length of ChAT-immunostained axon (4 varicosities/10 microm). In mouse, the mean regional densities of ACh innervation were thus measured at 13.9, 16.1, and 15.8 m of axons, for 5.6, 6.4, and 6.3 million varicosities per mm3 of tissue, in CA1, CA3, and DG, respectively. The values were comparable in rat, except for CA1, in which the densities were lower than in mouse by 40% in the stratum lacunosum, and 20% in the stratum radiatum. Otherwise, the laminar patterns of innervation were similar in the two species, the highest densities being found in the stratum lacunosum moleculare of CA3, pyramidale of both CA1 and CA3, and moleculare of DG. These quantitative data will be of particular interest to evaluate changes in mutant mice, or mice and rats subjected to experimental conditions affecting the cholinergic phenotype.
Collapse
Affiliation(s)
- Nicolas Aznavour
- Department de Pathologie et Biologie Cellulaire et de Physiologie, and Centre de Recherche en Sciences Neurologiques, Faculté de Médecine, Université de Montreal, Quebec, Canada
| | | | | |
Collapse
|
7
|
Abstract
An essential feature of episodic memory, the type of memory dependent on hippocampus, is that individual memories belong to particular moments in time. Recent PET studies suggest that memory encoding and recall occur at different locations in human hippocampus. Coupled with other attributes of hippocampus, this suggested to us that the septo-temporal hippocampal axis may play an important role in time perception. We propose a temporo-septal engram shift model of hippocampal memory. The model posits that memories gradually move along the hippocampus from a temporal encoding site to ever more septal sites from which they are recalled. We propose that the sense of time is encoded by the location of the engram along the temporo-septal axis.
Collapse
Affiliation(s)
- W W Lytton
- Department of Neurology, University of Wisconsin, Wm. S. Middleton VA Hospital, Madison 53706, USA
| | | |
Collapse
|
8
|
|
9
|
Abstract
The present study describes the postnatal development of zinc-containing boutons and their neurons of origin in the hippocampal region of the mouse. Ages investigated for the development of zinc-containing neuropil were postnatal days 0 (P0), P3, P7, P11, P15, P21, and P28. For zinc-containing cell bodies P7, P15, P21, and P28 were studied. In the area dentata, zinc-containing neuropil appeared first by P3 adjacent to the suprapyramidal limb of the granule cell layer and extended later toward the infrapyramidal limb. By P15, inter- and intralaminar gradients corresponded to those seen in adult animals. The appearance of labeled granule cells followed closely, although temporally delayed, the pattern of granule cell neurogenesis. All granule cells were labeled by P28. In the hippocampus proper, zinc-containing neuropil was seen by P0, but staining of the incipient mossy fiber zone was first visible by P3. Staining pattern and intensity developed gradually until they reached their mature appearance by P15. The distribution of labeled cells was identical to that seen in mature animals by P7 in CA3, but first by P21 in CA1. In the subiculum, neuropil staining first appeared proximally by P7, included all of this area by P11, and appeared mature by P21. A few labeled cells were seen in the proximal subiculum at all ages at which labeled cells were present in CA1. Labeled cells which extended further distally became first visible by P21. Their number and labeling intensity reached mature levels by P28. In the presubiculum, retrosplenial area 29e, and parasubiculum, neuropil staining first appeared by P3. The retrosplenial area 29e could be distinguished by P11. This area and the presubiculum reached their adult appearance by P21. This occurred first by P28 in the parasubiculum due to the late maturation of the parasubiculum a. Labeled cells were first seen by P7 in layer III of the presubiculum and by P15 in the retrosplenial area 29e and the parasubiculum. Cell labeling appeared mature by the same times as the neuropil staining. In the entorhinal areas a very light neuropil stain was apparent in the deeper layers by P0. A distinct rise in staining intensity was first observed by P7 in layers I-III. Thereafter, mature characteristics developed gradually and were attained by P21. Cell labeling was not seen in the medial entorhinal area. A few labeled cells were apparent by P7 in the lateral entorhinal area. After a slight increase by P15, numerous labeled cells were found in layer II and layer VI by P21. Their distribution and labeling intensity appeared mature by P28. Zinc-containing cells appear to represent cells formed late in the course of neurogenesis in all areas aside from the lateral entorhinal area. As far as intrinsic connections are concerned, it is the development of projections from this subset of neurons which is monitored in this study. We suggest that the appearance of zinc may contribute via its different effects on N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors to the end of a developmental phase that is permissive to changes in synaptic efficacy. Species differences and alternative functions of zinc are considered.
Collapse
Affiliation(s)
- L Slomianka
- Department of Anatomy and Human Biology, University of Western Australia, Nedlands, Australia.
| | | |
Collapse
|