1
|
Anadón R, Rodríguez-Moldes I, Adrio F. Distribution of gamma-aminobutyric acid immunoreactivity in the brain of the Siberian sturgeon (Acipenser baeri): Comparison with other fishes. J Comp Neurol 2024; 532:e25590. [PMID: 38335045 DOI: 10.1002/cne.25590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates. Immunohistochemical techniques with specific antibodies against GABA or against its synthesizing enzyme, glutamic acid decarboxylase (GAD) allowed characterizing GABAergic neurons and fibers in the CNS. However, studies on the CNS distribution of GABAergic neurons and fibers of bony fishes are scant and were done in teleost species. With the aim of understanding the early evolution of this system in bony vertebrates, we analyzed the distribution of GABA-immunoreactive (-ir) and GAD-ir neurons and fibers in the CNS of a basal ray-finned fish, the Siberian sturgeon (Chondrostei, Acipenseriformes), using immunohistochemical techniques. Our results revealed the presence and distribution of GABA/GAD-ir cells in different regions of the CNS such as olfactory bulbs, pallium and subpallium, hypothalamus, thalamus, pretectum, optic tectum, tegmentum, cerebellum, central grey, octavolateralis area, vagal lobe, rhombencephalic reticular areas, and the spinal cord. Abundant GABAergic innervation was observed in most brain regions, and GABAergic fibers were very abundant in the hypothalamic floor along the hypothalamo-hypophyseal tract and neurohypophysis. In addition, GABA-ir cerebrospinal fluid-contacting cells were observed in the alar and basal hypothalamus, saccus vasculosus, and spinal cord central canal. The distribution of GABAergic systems in the sturgeon brain shows numerous similarities to that observed in lampreys, but also to those of teleosts and tetrapods.
Collapse
Affiliation(s)
- Ramón Anadón
- Área de Bioloxía Celular, Departamento de Bioloxía Funcional, CIBUS, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Área de Bioloxía Celular, Departamento de Bioloxía Funcional, CIBUS, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fátima Adrio
- Área de Bioloxía Celular, Departamento de Bioloxía Funcional, CIBUS, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Large-Scale Analysis of the Diversity and Complexity of the Adult Spinal Cord Neurotransmitter Typology. iScience 2019; 19:1189-1201. [PMID: 31542702 PMCID: PMC6831849 DOI: 10.1016/j.isci.2019.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/24/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
The development of nervous system atlases is a fundamental pursuit in neuroscience, since they constitute a fundamental tool to improve our understanding of the nervous system and behavior. As such, neurotransmitter maps are valuable resources to decipher the nervous system organization and functionality. We present here the first comprehensive quantitative map of neurons found in the adult zebrafish spinal cord. Our study overlays detailed information regarding the anatomical positions, sizes, neurotransmitter phenotypes, and the projection patterns of the spinal neurons. We also show that neurotransmitter co-expression is much more extensive than previously assumed, suggesting that spinal networks are more complex than first recognized. As a first direct application, we investigated the neurotransmitter diversity in the putative glutamatergic spinal V2a-interneuron assembly. These studies shed new light on the diverse and complex functions of this important interneuron class in the neuronal interplay governing the precise operation of the central pattern generators.
Collapse
|
3
|
Development of putative inhibitory neurons in the embryonic and postnatal mouse superficial spinal dorsal horn. Brain Struct Funct 2016; 222:2157-2171. [PMID: 27783222 DOI: 10.1007/s00429-016-1331-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
The superficial spinal dorsal horn is the first relay station of pain processing. It is also widely accepted that spinal synaptic processing to control the modality and intensity of pain signals transmitted to higher brain centers is primarily defined by inhibitory neurons in the superficial spinal dorsal horn. Earlier studies suggest that the construction of pain processing spinal neural circuits including the GABAergic components should be completed by birth, although major chemical refinements may occur postnatally. Because of their utmost importance in pain processing, we intended to provide a detailed knowledge concerning the development of GABAergic neurons in the superficial spinal dorsal horn, which is now missing from the literature. Thus, we studied the developmental changes in the distribution of neurons expressing GABAergic markers like Pax2, GAD65 and GAD67 in the superficial spinal dorsal horn of wild type as well as GAD65-GFP and GAD67-GFP transgenic mice from embryonic day 11.5 (E11.5) till postnatal day 14 (P14). We found that GABAergic neurons populate the superficial spinal dorsal horn from the beginning of its delineation at E14.5. We also showed that the numbers of GABAergic neurons in the superficial spinal dorsal horn continuously increase till E17.5, but there is a prominent decline in their numbers during the first two postnatal weeks. Our results indicate that the developmental process leading to the delineation of the inhibitory and excitatory cellular assemblies of pain processing neural circuits in the superficial spinal dorsal horn of mice is not completed by birth, but it continues postnatally.
Collapse
|
4
|
Maturation of the GABAergic transmission in normal and pathologic motoneurons. Neural Plast 2011; 2011:905624. [PMID: 21785735 PMCID: PMC3140191 DOI: 10.1155/2011/905624] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/17/2011] [Indexed: 12/14/2022] Open
Abstract
γ-aminobutyric acid (GABA) acting on Cl−-permeable ionotropic type A (GABAA) receptors (GABAAR) is the major inhibitory neurotransmitter in the adult central nervous system of vertebrates. In immature brain structures, GABA exerts depolarizing effects mostly contributing to the expression of spontaneous activities that are instructive for the construction of neural networks but GABA also acts as a potent trophic factor. In the present paper, we concentrate on brainstem and spinal motoneurons that are largely targeted by GABAergic interneurons, and we bring together data on the switch from excitatory to inhibitory effects of GABA, on the maturation of the GABAergic system and GABAAR subunits. We finally discuss the role of GABA and its GABAAR in immature hypoglossal motoneurons of the spastic (SPA) mouse, a model of human hyperekplexic syndrome.
Collapse
|
5
|
Allain AE, Ségu L, Meyrand P, Branchereau P. Serotonin controls the maturation of the GABA phenotype in the ventral spinal cord via 5-HT1b receptors. Ann N Y Acad Sci 2010; 1198:208-19. [PMID: 20536936 DOI: 10.1111/j.1749-6632.2010.05433.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is a pleiotropic neurotransmitter known to play a crucial modulating role during the construction of brain circuits. Descending bulbo-spinal 5-HT fibers, coming from the caudal medullary cell groups of the raphe nuclei, progressively invade the mouse spinal cord and arrive at lumbar segments at E15.5 when the number of ventral GABA immunoreactive (GABA-ir) interneurons reaches its maximum. We thus raised the question of a possible interaction between these two neurotransmitter systems and investigated the effect of 5-HT descending inputs on the maturation of the GABA phenotype in ventral spinal interneurons. Using a quantitative anatomical study performed on acute and cultured embryonic mouse spinal cord, we found that the GABAergic neuronal population matured according to a similar rostro-caudal gradient both in utero and in organotypic culture. We showed that 5-HT delayed the maturation of the GABA phenotype in lumbar but not brachial interneurons. Using pharmacological treatments and mice lacking 5-HT(1B) or 5-HT(1A), we demonstrated that the 5-HT repressing effect on the GABAergic phenotype was specifically attributed to 5-HT(1B) receptors.
Collapse
Affiliation(s)
- Anne-Emilie Allain
- Centre de Neurosciences Intégratives et Cognitives, Université de Bordeaux, CNRS, Talence, France
| | | | | | | |
Collapse
|
6
|
Embryonically expressed GABA and glutamate drive electrical activity regulating neurotransmitter specification. J Neurosci 2008; 28:4777-84. [PMID: 18448654 DOI: 10.1523/jneurosci.4873-07.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotransmitter signaling in the mature nervous system is well understood, but the functions of transmitters in the immature nervous system are less clear. Although transmitters released during embryogenesis regulate neuronal proliferation and migration, little is known about their role in regulating early neuronal differentiation. Here, we show that GABA and glutamate drive calcium-dependent embryonic electrical activity that regulates transmitter specification. The number of neurons expressing different transmitters changes when GABA or glutamate signaling is blocked chronically, either using morpholinos to knock down transmitter-synthetic enzymes or applying pharmacological receptor antagonists during a sensitive period of development. We find that calcium spikes are triggered by metabotropic GABA and glutamate receptors, which engage protein kinases A and C. The results reveal a novel role for embryonically expressed neurotransmitters.
Collapse
|
7
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 892] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
8
|
Furlan F, Taccola G, Grandolfo M, Guasti L, Arcangeli A, Nistri A, Ballerini L. ERG conductance expression modulates the excitability of ventral horn GABAergic interneurons that control rhythmic oscillations in the developing mouse spinal cord. J Neurosci 2007; 27:919-28. [PMID: 17251434 PMCID: PMC6672895 DOI: 10.1523/jneurosci.4035-06.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During antenatal development, the operation and maturation of mammalian spinal networks strongly depend on the activity of ventral horn GABAergic interneurons that mediate excitation first and inhibition later. Although the functional consequence of GABA actions may depend on maturational processes in target neurons, it is also likely that evolving changes in GABAergic transmission require fine-tuning in GABA release, probably via certain intrinsic mechanisms regulating GABAergic neuron excitability at different embryonic stages. Nevertheless, it has not been possible, to date, to identify certain ionic conductances upregulated or downregulated before birth in such cells. By using an experimental model with either mouse organotypic spinal cultures or isolated spinal cord preparations, the present study examined the role of the ERG current (I(K(ERG))), a potassium conductance expressed by developing, GABA-immunoreactive spinal neurons. In organotypic cultures, only ventral interneurons with fast adaptation and GABA immunoreactivity, and only after 1 week in culture, were transformed into high-frequency bursters by E4031, a selective inhibitor of I(K(ERG)) that also prolonged and made more regular spontaneous bursts. In the isolated spinal cord in which GABA immunoreactivity and m-erg mRNA were colocalized in interneurons, ventral root rhythms evoked by NMDA plus 5-hydroxytryptamine were stabilized and synchronized by E4031. All of these effects were lost after 2 weeks in culture or before birth in coincidence with decreased m-erg expression. These data suggest that, during an early stage of spinal cord development, the excitability of GABAergic ventral interneurons important for circuit maturation depended, at least in part, on the function of I(K(ERG)).
Collapse
Affiliation(s)
- Francesco Furlan
- Physiology and Pathology Department, Center for Neuroscience B.R.A.I.N., University of Trieste, 34127 Trieste, Italy
| | - Giuliano Taccola
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy, and SPINAL Project, Udine
| | - Micaela Grandolfo
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy, and SPINAL Project, Udine
| | - Leonardo Guasti
- Department of Experimental Pathology and Oncology, University of Firenze, 50134 Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Firenze, 50134 Firenze, Italy
| | - Andrea Nistri
- Neurobiology Sector, International School for Advanced Studies, 34014 Trieste, Italy, and SPINAL Project, Udine
| | - Laura Ballerini
- Physiology and Pathology Department, Center for Neuroscience B.R.A.I.N., University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
9
|
Allain AE, Baïri A, Meyrand P, Branchereau P. Expression of the glycinergic system during the course of embryonic development in the mouse spinal cord and its co-localization with GABA immunoreactivity. J Comp Neurol 2006; 496:832-46. [PMID: 16628621 DOI: 10.1002/cne.20967] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To understand better the role of glycine and gamma-aminobutyric acid (GABA) in the mouse spinal cord during development, we previously described the ontogeny of GABA. Now, we present the ontogeny of glycine-immunoreactive (Gly-ir) somata and fibers, at brachial and lumbar levels, from embryonic day 11.5 (E11.5) to postnatal day 0 (P0). Spinal Gly-ir somata appeared at E12.5 in the ventral horn, with a higher density at the brachial level. They were intermingled with numerous Gly-ir fibers reaching the border of the marginal zone. By E13.5, at the brachial level, the number of Gly-ir perikarya sharply increased throughout the whole ventral horn, whereas the density of fibers declined in the marginal zone. In the dorsal horn, the first Gly-ir somata were then detected. From E13.5 to E16.5, at the brachial level, the density of Gly-ir cells remained stable in the ventral horn, and after E16.5 it decreased to reach a plateau. In the dorsal horn, the density of Gly-ir cells increased, and after E16.5 it remained stable. At the lumbar level, maximum expression was reached at E16.5 in both the ventral and dorsal horn. Finally, the co-localization of glycine and GABA was analyzed, in the ventral motor area, at E13.5, E15.5, and E17.5. The results showed that, regardless of developmental stage studied, one-third of the stained somata co-expressed GABA and glycine. Our data show that the glycinergic system matures 1 day later than the GABAergic system and follows a parallel spatiotemporal evolution, leading to a larger population of glycine cells in the ventral horn.
Collapse
Affiliation(s)
- Anne-Emilie Allain
- Laboratoire de Neurobiologie des Réseaux, Université Bordeaux 1 et Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5816, Talence, France
| | | | | | | |
Collapse
|
10
|
Furlan F, Guasti L, Avossa D, Becchetti A, Cilia E, Ballerini L, Arcangeli A. Interneurons transiently express the ERG K+ channels during development of mouse spinal networks in vitro. Neuroscience 2005; 135:1179-92. [PMID: 16165280 DOI: 10.1016/j.neuroscience.2005.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/06/2005] [Accepted: 06/16/2005] [Indexed: 11/15/2022]
Abstract
During spinal cord maturation neuronal excitability gradually differentiates to meet different functional demands. Spontaneous activity, appearing early during spinal development, is regulated by the expression pattern of ion channels in individual neurons. While emerging excitability of embryonic motoneurons has been widely investigated, little is known about that of spinal interneurons. Voltage-dependent K+ channels are a heterogeneous class of ion channels that accomplish several functions. Recently voltage-dependent K+ channels encoded by erg subfamily genes (ERG channels) were shown to modulate excitability in immature neurons of mouse and quail. We investigated the expression of ERG channels in immature spinal interneurons, using organotypic embryonic cultures of mouse spinal cord after 1 and 2 weeks of development in vitro. We report here that all the genes of the erg family known so far (erg1a, erg1b, erg2, erg3) are expressed in embryonic spinal cultures. We demonstrate for the first time that three ERG proteins (ERG1A, ERG2 and ERG3) are co-expressed in the same neuronal population, and display a spatio-temporal distribution in the spinal slices. ERG immuno-positive cells, representing mainly GABAergic interneurons, were present in large numbers at early stages of development, while declining later, with a ventral to dorsal gradient. Patch clamp recordings confirmed these data, showing that ventral interneurons expressed functional ERG currents only transiently. Similar expression of the erg genes was observed at comparable ages in vivo. The role of ERG currents in regulating neuronal excitability during the earliest phases of spinal circuitry development will be examined in future studies.
Collapse
Affiliation(s)
- F Furlan
- Physiology and Pathology Department, Center for Neuroscience B.R.A.I.N., Psychology Faculty, University of Trieste, via Sant'Anastasio 12, 34134, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Nissen UV, Mochida H, Glover JC. Development of projection-specific interneurons and projection neurons in the embryonic mouse and rat spinal cord. J Comp Neurol 2005; 483:30-47. [PMID: 15672401 DOI: 10.1002/cne.20435] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interneurons and projection neurons in the lumbar spinal cord of mouse and rat embryos were labeled retrogradely with fluorescent dextran amines from a distance of one segment from the segment of origin [lumbar segment (L) 2]. Six classes with specific axonal projections (ipsilateral ascending, descending, and bifurcating, and commissural ascending, descending, and bifurcating) were identified by differential labeling in both species and followed from embryonic day (E)12 to birth in the mouse. Neurons with shorter projections (intrasegmental interneurons) were not studied. We show that the four nonbifurcating neuron classes occupy characteristic, partially overlapping domains in the transverse plane, indicating a systematic pattern of migration and settlement related to axon trajectories. The number of neurons in each of the nonbifurcating classes increased steadily during development. Bifurcating neurons represented a minor fraction of the total throughout development and had relatively scattered positions within the ipsilateral and commissural neuron domains. Combination of retrograde tracing and immunohistochemistry for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) showed that none of the spinal neurons in the six projection-specific classes was GABA positive, suggesting that all GABA-positive spinal neurons, including previously described GABA-positive commissural neurons, are unlikely to have projections exceeding one or two segments in either direction.
Collapse
Affiliation(s)
- Ulla Vig Nissen
- Department of Physiology, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | | | | |
Collapse
|
12
|
Xu H, Whelan PJ, Wenner P. Development of an Inhibitory Interneuronal Circuit in the Embryonic Spinal Cord. J Neurophysiol 2005; 93:2922-33. [PMID: 15574794 DOI: 10.1152/jn.01091.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Locally projecting inhibitory interneurons play a crucial role in the patterning and timing of network activity. However, because of their relative inaccessibility, little is known about their development or incorporation into circuits. In this study, we characterized the functional onset, neurotransmitters, rostrocaudal spread, and funicular distribution of one such spinal interneuronal circuit during development. The R-interneuron is the avian homologue of the mammalian Renshaw cell. Both cell types receive input from motoneuron recurrent collaterals and make direct connections back onto motoneurons. By stimulating motoneurons projecting in a given ventral root and recording the response in adjacent ventral roots, we demonstrate that the R-interneuron circuit becomes functional between embryonic day 6 (E6) and E7. This ventral root response is observed at E11 and at E14 until it can no longer be detected at E16. Using bath-applied neurotransmitter receptor antagonists, we were able to demonstrate that the circuit is predominately nicotinic and GABAergic from E7.5 to E15. We also found a glutamatergic component to the pathway throughout this developmental period. The R-interneuron projects three or more segments both rostrally and caudally through the ventrolateral funiculus. The distribution of this circuit may become more locally focused between E7.5 and E15.
Collapse
Affiliation(s)
- Huaying Xu
- Department of Physiology, Emory University, School of Medicine, Atlanta, GA 30340, USA
| | | | | |
Collapse
|
13
|
Sueiro C, Carrera I, Molist P, Rodríguez-Moldes I, Anadón R. Distribution and development of glutamic acid decarboxylase immunoreactivity in the spinal cord of the dogfishScyliorhinus canicula(elasmobranchs). J Comp Neurol 2004; 478:189-206. [PMID: 15349979 DOI: 10.1002/cne.20285] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The adult distribution and development of gamma-aminobutyric acid (GABA)-synthesizing cells and fibers in the spinal cord of the lesser spotted dogfish (Scyliorhinus canicula L.) was studied by means of immunohistochemistry using antibodies against glutamic acid decarboxylase (GAD). Complementary immunostaining with antibodies against GABA, tyrosine hydroxylase (TH), and HuC/HuD (members of the Hu/Elav family of RNA-associated proteins) and staining with a reduced silver procedure ("en bloc" Bielschowski method), Nissl, and hematoxylin were also used. In adults, GAD-immunoreactive (GAD-ir) cells were observed in the ventral horns, in the spinal nucleus of the dorsal horn, at the base of the dorsal horns, and around the central canal, where some GAD-ir cells were cerebrospinal fluid-contacting (CSF-c). In addition, a few GAD-ir cells were observed in the lateral funiculus between the ventral horn and the marginal nucleus. The adult spinal cord was richly innervated by GAD-ir fibers. Large numbers of GAD-ir fibers and boutons were observed in the dorsal and ventral horns and also interstitially in the dorsal, lateral, and ventral funiculi. In addition, a rich GAD-ir innervation was observed in the marginal nucleus of the spinal cord. In the embryonic spinal cord, GAD-ir cells develop very early: The earliest cells were observed in the very thin mantle/marginal layer of stage 22 embryos in a short length of the spinal cord. At stages 25 and 26, several types of GAD-ir cells (commissural and noncommissural) were distinguished, and two of these cells were of CSF-c type. At stages 28, 30, and 31, the GAD-ir populations exhibited a marked longitudinal columnar organization. Double-immunolabeling experiments in embryos showed the presence of two different GAD-ir CSF-c cell populations, one ventral that is simultaneously TH-ir and other more dorsal that is TH-negative. By stage 33 (prehatching), GAD-expressing cells are present in virtually all loci, as in adults, especially in the ventral horn and base of the dorsal horn. The present results for the lesser spotted dogfish suggest an important role for gamma-aminobutyric acid in sensory and motor circuits of the spinal cord.
Collapse
Affiliation(s)
- Catalina Sueiro
- Departamento de Biología Celular y Ecología, Universidad de Santiago de Compostela, 15706-Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
14
|
Higashijima SI, Masino MA, Mandel G, Fetcho JR. Engrailed-1 expression marks a primitive class of inhibitory spinal interneuron. J Neurosci 2004; 24:5827-39. [PMID: 15215305 PMCID: PMC6729218 DOI: 10.1523/jneurosci.5342-03.2004] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 04/30/2004] [Accepted: 04/30/2004] [Indexed: 11/21/2022] Open
Abstract
Studies in chicks and mice have suggested that transcription factors mark functional subtypes of interneurons in the developing spinal cord. We used genetic, morphological, and physiological studies to test this proposed association in zebrafish. We found that Engrailed-1 expression uniquely marks a class of ascending interneurons, called circumferential ascending (CiA) interneurons, with ipsilateral axonal projections in both motor and sensory regions of spinal cord. These cells express the glycine transporter 2 gene and are the only known ipsilateral interneurons positive for this marker of inhibitory transmission. Patch recordings show that the CiA neurons are rhythmically active during swimming. Pairwise recordings from the CiA interneurons and postsynaptic cells reveal that the Engrailed-1 neurons produce monosynaptic, strychnine-sensitive inhibition of dorsal sensory interneurons and also inhibit more ventral neurons, including motoneurons and descending interneurons. We conclude that Engrailed-1 expression marks a class of inhibitory interneuron that seems to provide all of the ipsilateral glycinergic inhibition in the spinal cord of embryonic and larval fish. Individual Engrailed-1-positive cells are multifunctional, playing roles in both sensory gating and motor pattern generation. This primitive cell type may have given rise to several, more specialized glycinergic inhibitory interneurons in birds and mammals. Our data support the view that the subdivision of spinal cord into different regions by transcription factors defines a primitive functional organization of spinal interneurons that formed a developmental and evolutionary foundation on which more complex systems were built.
Collapse
Affiliation(s)
- Shin-ichi Higashijima
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794-5230, USA
| | | | | | | |
Collapse
|
15
|
Allain AE, Baïri A, Meyrand P, Branchereau P. Ontogenic changes of the GABAergic system in the embryonic mouse spinal cord. Brain Res 2004; 1000:134-47. [PMID: 15053961 DOI: 10.1016/j.brainres.2003.11.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2003] [Indexed: 11/28/2022]
Abstract
Numerous studies have demonstrated an excitatory action of GABA early in development, which is likely to play a neurotrophic role. In order to better understand the role of GABA in the mouse spinal cord, we followed the evolution of GABAergic neurons over the course of development. We investigated, in the present study, the ontogeny of GABA immunoreactive (GABA-ir) cell bodies and fibers in the embryonic mouse spinal cord at brachial and lumbar levels. GABA-ir somata were first detected at embryonic day 11.5 (E11.5) exclusively at brachial level in the marginal zone. By E13.5, the number of GABAergic neurons sharply increased throughout the extent of the ventral horn both at brachial and lumbar level. Stained perikarya first appeared in the future dorsal horn at E15.5 and progressively invaded this area while they decreased in number in the presumed ventral gray matter. At E12.5, E13.5 and E15.5, we checked the possibility that ventral GABA-ir cells could belong to the motoneuronal population. Using a GABA/Islet-1/2 double labeling, we did not detect any double-stained neurons indicating that spinal motoneurons do not synthesize GABA during the course of development. GABA-ir fibers also appeared at the E11.5 stage in the presumptive lateral white matter at brachial level. At E12.5 and E13.5, GABA-ir fibers progressively invaded the ventral marginal zone and by E15.5 reached the dorsal marginal zone. At E17.5 and postnatal day 0 (P0), the number of GABA-ir fibers declined in the white matter. Finally, by P0, GABA immunoreactivity that delineated somata was mainly restricted to the dorsal gray matter and declined in intensity and extent. The ventral gray matter exhibited very few GABA-ir cell bodies at this neonatal stage of development. The significance of the migration of somatic GABA immunoreactivity from ventral to the dorsal gray matter is discussed.
Collapse
Affiliation(s)
- Anne-Emilie Allain
- Laboratoire de Neurobiologie des Réseaux, Université Bordeaux 1 et Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5816, Avenue des Facultés, 33405 Talence, France
| | | | | | | |
Collapse
|
16
|
Ruiz Y, Pombal MA, Megías M. Development of GABA-immunoreactive cells in the spinal cord of the sea lamprey,P. marinus. J Comp Neurol 2004; 470:151-63. [PMID: 14750158 DOI: 10.1002/cne.11032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The lamprey spinal cord increases in length and size during all its life cycle; thus, it is expected that new cells will be generated. This expectation suggests that the locomotor circuits must be continuously remodeled. Key elements in the cellular network controlling locomotor behavior are inhibitory cells. Here, we studied the gamma-aminobutyric acid-immunoreactive (GABA-ir) cells in the lamprey spinal cord during postembryonic development. Three major populations of GABA-ir cells were identified according to their distribution: those located in the gray matter, those contacting the cerebrospinal liquid (LC cells), and those located in the white matter. The results show (1). the number of GABA-ir cells per segment increase from prolarvae (<10 mm) to adulthood; (2). the lower number of GABA-ir cells in 100 microm of spinal cord is 66 +/- 7, found in premetamorphic larvae, and the highest is 107 +/- 6, found in postmetamorphic animals; (3). the gray matter and LC GABA-ir cells show different variations in number depending on the developmental period. Thus, in the 10-mm larvae, the gray matter GABA-ir cells are more abundant than LC cells, whereas in the young postmetamorphic specimens, the contrary occurs. Most of the GABA-ir cells located in the white matter were classified as edge cells. They increase in number from the beginning of the prolarval period, where there are not white matter-positive cells, to the middle larval period, where there are 9 +/- 4 GABA-ir edge cells per segment. This value was unaltered in later periods, where GABA-ir edge cells represent 20-30% of the total number of edge cells per segment. The increase in number of GABA-ir cells in these populations during a specific point of the lamprey life cycle may indicate different inhibitory requirements of the locomotor circuit at different developmental periods.
Collapse
Affiliation(s)
- Y Ruiz
- Department of Functional Biology and Health Sciences, Faculty of Sciences, University of Vigo, 36200 Vigo, Spain
| | | | | |
Collapse
|
17
|
Higashijima SI, Mandel G, Fetcho JR. Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. J Comp Neurol 2004; 480:1-18. [PMID: 15515020 DOI: 10.1002/cne.20278] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Zebrafish are an excellent model for studies of the functional organization of neuronal circuits, but little is known regarding the transmitter phenotypes of the neurons in their nervous system. We examined the distribution in spinal cord and hindbrain of neurons expressing markers of transmitter phenotype, including the vesicular glutamate transporter (VGLUT) genes for glutamatergic neurons, the neuronal glycine transporter (GLYT2) for glycinergic neurons, and glutamic acid decarboxylase (GAD65/67) for GABAergic neurons. All three markers were expressed in a large domain in the dorsal two-thirds of spinal cord, with additional, more ventral expression domains for VGLUT2 and GAD/GABA. In the large dorsal domain, dual in situ staining showed that GLYT2-positive cells were intermingled with VGLUT2 cells, with no dual-stained neurons. Many of the neurons in the dorsal expression domain that were positive for GABA markers at embryonic stages were also positive for GLYT2, suggesting that the cells might use both GABA and glycine, at least early in their development. The intermingling of neurons expressing inhibitory and excitatory markers in spinal cord contrasted markedly with the organization in hindbrain, where neurons expressing a particular marker were clustered together to form stripes that were visible running from rostral to caudal in horizontal sections and from dorsomedial to ventrolateral in cross sections. Dual labeling showed that the stripes of neurons labeled with one transmitter marker alternated with stripes of cells labeled for the other transmitter phenotypes. The differences in the distribution of excitatory and inhibitory neurons in spinal cord versus hindbrain may be tied to differences in their patterns of development and functional organization.
Collapse
Affiliation(s)
- Shin-Ichi Higashijima
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794-5230, USA
| | | | | |
Collapse
|
18
|
Meléndez-Ferro M, Pérez-Costas E, Villar-Cheda B, Rodríguez-Muñoz R, Anadón R, Rodicio MC. Ontogeny of gamma-aminobutyric acid-immunoreactive neurons in the rhombencephalon and spinal cord of the sea lamprey. J Comp Neurol 2003; 464:17-35. [PMID: 12866126 DOI: 10.1002/cne.10773] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of neurons expressing gamma-aminobutyric acid (GABA) in the rhombencephalon and spinal cord of the sea lamprey (Petromyzon marinus) was studied for the first time with an anti-GABA antibody. The earliest GABA-immunoreactive (GABAir) neurons appear in late embryos in the basal plate of the isthmus, caudal rhombencephalon, and rostral spinal cord. In prolarvae, the GABAir neurons of the rhombencephalon appear to be distributed in spatially restricted cellular domains that, at the end of the prolarval period, form four longitudinal GABAir bands (alar dorsal, alar ventral, dorsal basal, and ventral basal). In the spinal cord, we observed only three GABAir longitudinal bands (dorsal, intermediate, and ventral). The larval pattern of GABAir neuronal populations was established by the 30-mm stage, and the same populations were observed in premetamorphic and adult lampreys. The ontogeny of GABAergic populations in the lamprey rhombencephalon and spinal cord is, in general, similar to that previously described in mouse and Xenopus.
Collapse
Affiliation(s)
- Miguel Meléndez-Ferro
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Birinyi A, Viszokay K, Wéber I, Kiehn O, Antal M. Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats. J Comp Neurol 2003; 461:429-40. [PMID: 12746860 DOI: 10.1002/cne.10696] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is strong evidence that commissural interneurons, neurons with axons that extend to the contralateral side of the spinal cord, play an important role in the coordination of left/right alternation during locomotion. In this study we investigated the projections of commissural interneurons to motor neurons and other commissural interneurons on the other side of the spinal cord in neonatal rats. To establish whether there are direct contacts between axons of commissural interneurons and motor neurons, we carried out two series of experiments. In the first experiment we injected biotinylated dextran amine (BDA) into the lateral motor column to retrogradely label commissural interneurons that may have direct projections to motor neurons. Stained neurons were recovered in the ventromedial areas of the contralateral gray matter in substantial numbers. In the second experiment BDA was injected into the ventromedial gray matter on one side of the lumbar spinal cord, whereas motor neurons were simultaneously labeled on the opposite side by applying biocytin onto the ventral roots. BDA injections into the ventromedial gray matter labeled a strong axon bundle that arose from the site of injection, crossed the midline in the ventral commissure, and extensively arborized in the contralateral ventral gray matter. Many of these axons made close appositions with dendrites and somata of motor neurons and also with commissural interneurons retrogradely labeled with BDA. The results suggest that commissural interneurons may establish monosynaptic contacts with motor neurons on the opposite side of the spinal cord. Our findings also indicate that direct reciprocal connections between commissural interneurons on the two sides of the spinal cord may also exist.
Collapse
Affiliation(s)
- András Birinyi
- Department of Anatomy, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, H-4012 Hungary
| | | | | | | | | |
Collapse
|
20
|
Chub N, O'Donovan MJ. Post-Episode Depression of GABAergic Transmission in Spinal Neurons of the Chick Embryo. J Neurophysiol 2001; 85:2166-76. [PMID: 11353031 DOI: 10.1152/jn.2001.85.5.2166] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell recordings were obtained from ventral horn neurons in spontaneously active spinal cords isolated from the chick embryo [ embryonic days 10 to 11 ( E10–E11)] to examine the post-episode depression of GABAergic transmission. Spontaneous activity occurred as recurrent, rhythmic episodes approximately 60 s in duration with 10- to 15-min quiescent inter-episode intervals. Current-clamp recording revealed that episodes were followed by a transient hyperpolarization (7 ± 1.2 mV, mean ± SE), which dissipated as a slow (0.5–1 mV/min) depolarization until the next episode. Local application of bicuculline 8 min after an episode hyperpolarized spinal neurons by 6 ± 0.8 mV and increased their input resistance by 13%, suggesting the involvement of GABAergic transmission. Gramicidin perforated-patch recordings showed that the GABAa reversal potential was above rest potential ( E GABAa = −29 ± 3 mV) and allowed estimation of the physiological intracellular [Cl−] = 50 mM. In whole cell configuration (with physiological electrode [Cl−]), two distinct types of endogenous GABAergic currents ( I GABAa) were found during the inter-episode interval. The first comprised TTX-resistant, asynchronous miniature postsynaptic currents (mPSCs), an indicator of quantal GABA release (up to 42% of total mPSCs). The second (tonic I GABAa) was complimentary to the slow membrane depolarization and may arise from persistent activation of extrasynaptic GABAa receptors. We estimate that approximately 10 postsynaptic channels are activated by a single quantum of GABA release during an mPSC and that about 30 extrasynaptic GABAa channels are required for generation of the tonic I GABAa in ventral horn neurons. We investigated the post-episode depression of I GABAa by local application of GABA or isoguvacine (100 μM, for 10–30 s) applied before and after an episode at holding potentials ( V hold) −60 mV. The amplitude of the evoked I GABA was compared after clamping the cell during the episode at one of three different V hold: −60 mV, below E GABAa resulting in Cl− efflux; −30 mV, close to E GABAa with minimal Cl− flux; and 0 mV, above E GABAa resulting in Cl− influx during the episode. The amplitude of the evoked I GABA changed according to the direction of Cl− flux during the episode: at −60 mV a 41% decrease, at −30 mV a 4% reduction, and at 0 mV a 19% increase. These post-episode changes were accompanied by shifts of E GABAa of −10, −1.2, and +7 mV, respectively. We conclude that redistribution of intracellular [Cl−] during spontaneous episodes is likely to be an important postsynaptic mechanism involved in the post-episode depression of GABAergic transmission in chick embryo spinal neurons.
Collapse
Affiliation(s)
- N Chub
- Section on Developmental Neurobiology, Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
21
|
Neuromuscular activity blockade induced by muscimol and d-tubocurarine differentially affects the survival of embryonic chick motoneurons. J Neurosci 1999. [PMID: 10479694 DOI: 10.1523/jneurosci.19-18-07925.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To understand better how spontaneous motoneuron activity and intramuscular nerve branching influence motoneuron survival, we chronically treated chicken embryos in ovo with either d-tubocurarine (dTC) or muscimol during the naturally occurring cell death period, assessing their effects on activity by in ovo motility measurement and muscle nerve recordings from isolated spinal cord preparations. Because muscimol, a GABA(A) agonist, blocked both spontaneous motoneuron bursting and that elicited by descending input but did not rescue motoneurons, we conclude that spontaneous bursting activity is not required for the process of normal motoneuron cell death. dTC, which rescues motoneurons and blocks neuromuscular transmission, blocked neither spontaneous nor descending input-elicited bursting and early in the cell death period actually increased burst amplitude. These changes in motoneuron activation could alter the uptake of trophic molecules or gene transcription via altered patterns of [Ca(2+)](i), which in turn could affect motoneuron survival directly or indirectly by altering intramuscular nerve branching. A good correlation was found between nerve branching and motoneuron survival under various experimental conditions: (1) dTC, but not muscimol, greatly increased branching; (2) the removal of PSA from NCAM partially reversed the effects of dTC on both branching and survival, indicating that branching is a critical variable influencing motoneuron survival; (3) muscimol, applied with dTC, prevented the effect of dTC on survival and motoneuron bursting and, to a large extent, its effect on branching. However, the central effects of dTC also appear to be important, because muscimol, which prevented motoneuron activity in the presence of dTC, also prevented the dTC-induced rescue of motoneurons.
Collapse
|
22
|
Identification of an interneuronal population that mediates recurrent inhibition of motoneurons in the developing chick spinal cord. J Neurosci 1999. [PMID: 10460262 DOI: 10.1523/jneurosci.19-17-07557.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on the development of synaptic specificity, embryonic activity, and neuronal specification in the spinal cord have all been limited by the absence of a functionally identified interneuron class (defined by its unique set of connections). Here, we identify an interneuron population in the embryonic chick spinal cord that appears to be the avian equivalent of the mammalian Renshaw cell (R-interneurons). These cells receive monosynaptic nicotinic, cholinergic input from motoneuron recurrent collaterals. They make predominately GABAergic connections back onto motoneurons and to other R-interneurons but project rarely to other spinal interneurons. The similarity between the connections of the developing R-interneuron, shortly after circuit formation, and the mature mammalian Renshaw cell raises the possibility that R-interneuronal connections are formed precisely from the onset. Using a newly developed optical approach, we identified the location of R-interneurons in a column, dorsomedial to the motor nucleus. Functional characterization of the R-interneuron population provides the basis for analyses that have so far only been possible for motoneurons.
Collapse
|
23
|
Sun Q, Dale N. Developmental changes in expression of ion currents accompany maturation of locomotor pattern in frog tadpoles. J Physiol 1998; 507 ( Pt 1):257-64. [PMID: 9490848 PMCID: PMC2230765 DOI: 10.1111/j.1469-7793.1998.257bu.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The K+ currents of spinal neurons acutely dissociated from Xenopus larvae were studied and compared with those of neurons dissociated from Xenopus embryos. 2. The density of total outward current in the larval and embryonic neurons remained the same from stage 37/38 to stage 42. 3. Almost all neurons at stage 42 expressed a fast activating Ca2+-dependent K+ current (IKCa) that was largely absent from embryonic neurons. Whereas IKCa became larger and more prevalent during development, the delayed rectifier K+ currents were down-regulated. 4. About 53 % of IKCa was selectively blocked by iberiotoxin which had no effect on the delayed rectifier K+ currents or the K+ currents of embryonic neurons. 5. The firing properties of neurons isolated from embryos were unchanged by iberiotoxin. However, the toxin greatly increased the frequency of firing in larval neurons. 6. Iberiotoxin extended the duration of ventral root bursts during fictive swimming in larvae at stages 41 and 42 but had no effect at stage 40. The progressive expression of IKCa thus contributed to burst termination. 7. We have found that changes in expression of outward current closely correlate with the maturation of the motor pattern during development. At a time when the motor pattern has a need for a burst-terminating mechanism, the larval neurons express a channel with properties appropriate for such a role.
Collapse
Affiliation(s)
- Q Sun
- School of Biomedical Sciences, Bute Medical Building, University of St Andrews, St Andrews, Fife KY16 9TS, UK
| | | |
Collapse
|
24
|
Lundgren P, Johansson L, Englund C, Sellström A, Mattsson MO. Expression pattern of glutamate decarboxylase (GAD) in the developing cortex of the embryonic chick brain. Int J Dev Neurosci 1997; 15:127-37. [PMID: 9099623 DOI: 10.1016/s0736-5748(96)00068-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The development of the GABAergic system in the chick embryo telencephalon has been studied. Special emphasis was placed on the development of glutamate decarboxylase (GAD) between embryonic day 8 (E8) and E17. The GABA immunoreactivity and neuron-specific enolase expression was detected simultaneously in glutardialdehyde fixed sections, which confirmed that GABAergic cells exhibit neuronal phenotype. The GAD expression was studied by means of immunohistochemistry on cryo-sectioned material both at the light and electron microscopic levels. Furthermore, the presence and localization of GAD65 and GAD67 mRNAs were studied with an in situ hybridization technique with digoxigenin-labeled RNA probes. Protein expression as well as mRNA appearance mostly coincided both temporally and spatially. In the parahippocampal area, as well as in other regions of the developing cortex, GAD staining was seen from E8 onwards. The number of positive cells increased as did the intensity of staining up to E14. As observed in the electron microscope, the GAD protein was co-localized with GABA in most cases, although some GAD-positive cells devoid of GABA-staining also were observed. The pattern of GAD mRNA expression was in general similar to that of GAD immunostaining. Both GAD65 and GAD67 mRNA were detected during the entire period. Furthermore, GAD67 mRNA localization spatially was more correlated with GAD protein expression. The study provides evidence for the notion that development of the GABAergic system occurs rapidly during embryogenesis and, as suggested from mRNA data, that two forms of GAD with slight difference in distribution can contribute to this.
Collapse
Affiliation(s)
- P Lundgren
- Dept of Cellular and Developmental Biology, Umeå University, Sweden
| | | | | | | | | |
Collapse
|
25
|
Ahman AK, Wågberg F, Mattsson MO. Two glutamate decarboxylase forms corresponding to the mammalian GAD65 and GAD67 are expressed during development of the chick telencephalon. Eur J Neurosci 1996; 8:2111-7. [PMID: 8921302 DOI: 10.1111/j.1460-9568.1996.tb00732.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The gamma-aminobutyric acid (GABA)-synthesizing enzyme glutamate decarboxylase (GAD) was studied during development of the chick telencephalon. By means of reverse-phase HPLC analysis, we showed that GABA indeed accumulates during embryogenesis, whereas the levels of glutamate, the substrate for GAD, are more or less unchanged up to later developmental stages. The enzyme activity increased approximately 25-fold from embryonic day 3 to embryonic day 17. Immunoblotting data revealed that two GAD proteins, of approximately 65 and 67 kDa, were present during the period investigated. Furthermore, Northern blot analysis with probes obtained from rat cDNA sequences, as well as a chicken-specific probe for GAD65 generated by means of reverse transcriptase-polymerase chain reaction (RT-PCR), strengthened the interpretation that the chick embryo expresses genes corresponding to GAD65 and GAD67. The rat probes recognized transcript sizes of 3.9 kb (GAD65) and 5.6 kb (GAD67), sizes which are different from those of the rat brain (Erlander et al., Neuron, 7, 91-100, 1991). Sequencing of the RT-PCR products revealed a high level of homology (82% at the nucleotide level) between the mammalian and chick GAD65 genes. Taken together, these findings suggest that the chick embryo expresses two GAD genes during embryogenesis. The functional properties of each gene product remain to be investigated.
Collapse
Affiliation(s)
- A K Ahman
- Department of Cellular and Developmental Biology, Umeå University, Sweden
| | | | | |
Collapse
|
26
|
Berki AC, O'Donovan MJ, Antal M. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord. J Comp Neurol 1995; 362:583-96. [PMID: 8636469 DOI: 10.1002/cne.903620411] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of immunoreactivity for the putative inhibitory amino acid neurotransmitter glycine was investigated in the embryonic and posthatched chick lumbosacral spinal cord by using postembedding immunocytochemical methods. Glycine immunoreactive perikarya were first observed at embryonic day 8 (E8) both in the dorsal and ventral gray matters. The number of immunostained neurons sharply increased by E10 and was gradually augmented further at later developmental stages. The general pattern of glycine immunoreactivity characteristic of mature animals had been achieved by E12 and was only slightly altered afterward. Most of the immunostained neurons were located in the presumptive deep dorsal horn (laminae IV-VI) and lamina VII, although glycine-immunoreactive neurons were scattered throughout the entire extent of the spinal gray matter. By using some of our previously obtained and published data concerning the development of gamma-aminobutyric acid (GABA)-ergic neurons in the embryonic chick lumbosacral spinal cord, we have compared the numbers, sizes, and distribution of glycine- and GABA-immunoreactive spinal neurons at various developmental stages and found the following marked differences in the developmental characteristics of these two populations of putative inhibitory interneurons. (i) GABA immunoreactivity was expressed very early (E4), whereas immunoreactivity for glycine appeared relatively late (E8) in embryonic development. (ii) In the ventral horn, GABA immunoreactivity declined, whereas immunoreactivity for glycine gradually increased from E8 onward in such a manner that the sum of glycinergic and GABAergic perikarya remained constant during the second half of embryonic development. (iii) Glycinergic and GABAergic neurons showed different distribution patterns in the spinal gray matter throughout the entire course of embryogenesis as well as in the posthatched animal. When investigating the colocalization of glycine and GABA immunoreactivities, perikarya immunostained for both amino acids were revealed at all developmental stages from E8 onward, and the proportions of glycine- and GABA-immunoreactive neurons that were also immunostained for the other amino acid were remarkably constant during development. The characteristic features of the development of the investigated putative inhibitory spinal interneurons are discussed and correlated with previous neuroanatomical and physiological studies.
Collapse
Affiliation(s)
- A C Berki
- Department of Anatomy, University Medical School, Debrecen, Hungary
| | | | | |
Collapse
|
27
|
Lundgren P, Mattsson MO, Johansson L, Ottersen OP, Sellström A. Morphological and GABA-immunoreactive development of the embryonic chick telencephalon. Int J Dev Neurosci 1995; 13:463-72. [PMID: 7484217 DOI: 10.1016/0736-5748(95)00010-e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The development of neurons utilizing gamma-aminobutyric acid (GABAergic neurons) in prosencephalon and telencephalon from chicken embryonic days 4-14 (E4-E14) was studied by means of immunohistochemistry. Furthermore, routine histology and transmission electron microscopy. respectively, were performed in order to study the morphological development in the designated area. The main finding is that development of GABAergic neurons in the chick telencephalon is rapid; the GABA neurons are appearing in bulk at day 8, being "overexpressed" at days 10-11, decreasing in numbers thereafter and achieving mature morphology on day 14, which is considerably faster than in the rodent. Morphological analysis revealed that the prosencephalon mainly consisted of a thin layer of undifferentiated neuroblasts in the E4 embryo. By E6, the prosencephalon had increased in thickness and occasional cells outside the neuroepithelium showed a more mature morphology with a few cells weakly staining positive for GABA. At E8, the prospective granular and subventricular layers had developed. At E14, the appearance of the telencephalon is approximating that of the adult since both ependymal cells and morphologically mature neurons can be seen.
Collapse
Affiliation(s)
- P Lundgren
- Department of Cellular and Developmental Biology, Umeå University, Sweden
| | | | | | | | | |
Collapse
|