1
|
Rana MM, Nguyen DD. EISA-Score: Element Interactive Surface Area Score for Protein–Ligand Binding Affinity Prediction. J Chem Inf Model 2022; 62:4329-4341. [DOI: 10.1021/acs.jcim.2c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Md Masud Rana
- Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Duc Duy Nguyen
- Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
2
|
Abstract
Recently, machine learning (ML) has established itself in various worldwide benchmarking competitions in computational biology, including Critical Assessment of Structure Prediction (CASP) and Drug Design Data Resource (D3R) Grand Challenges. However, the intricate structural complexity and high ML dimensionality of biomolecular datasets obstruct the efficient application of ML algorithms in the field. In addition to data and algorithm, an efficient ML machinery for biomolecular predictions must include structural representation as an indispensable component. Mathematical representations that simplify the biomolecular structural complexity and reduce ML dimensionality have emerged as a prime winner in D3R Grand Challenges. This review is devoted to the recent advances in developing low-dimensional and scalable mathematical representations of biomolecules in our laboratory. We discuss three classes of mathematical approaches, including algebraic topology, differential geometry, and graph theory. We elucidate how the physical and biological challenges have guided the evolution and development of these mathematical apparatuses for massive and diverse biomolecular data. We focus the performance analysis on protein-ligand binding predictions in this review although these methods have had tremendous success in many other applications, such as protein classification, virtual screening, and the predictions of solubility, solvation free energies, toxicity, partition coefficients, protein folding stability changes upon mutation, etc.
Collapse
Affiliation(s)
- Duc Duy Nguyen
- Department of Mathematics, Michigan State University, MI 48824, USA.
| | - Zixuan Cang
- Department of Mathematics, Michigan State University, MI 48824, USA.
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA. and Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA and Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
| |
Collapse
|
3
|
Nguyen DD, Wei GW. DG-GL: Differential geometry-based geometric learning of molecular datasets. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3179. [PMID: 30693661 PMCID: PMC6598676 DOI: 10.1002/cnm.3179] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 05/11/2023]
Abstract
MOTIVATION Despite its great success in various physical modeling, differential geometry (DG) has rarely been devised as a versatile tool for analyzing large, diverse, and complex molecular and biomolecular datasets because of the limited understanding of its potential power in dimensionality reduction and its ability to encode essential chemical and biological information in differentiable manifolds. RESULTS We put forward a differential geometry-based geometric learning (DG-GL) hypothesis that the intrinsic physics of three-dimensional (3D) molecular structures lies on a family of low-dimensional manifolds embedded in a high-dimensional data space. We encode crucial chemical, physical, and biological information into 2D element interactive manifolds, extracted from a high-dimensional structural data space via a multiscale discrete-to-continuum mapping using differentiable density estimators. Differential geometry apparatuses are utilized to construct element interactive curvatures in analytical forms for certain analytically differentiable density estimators. These low-dimensional differential geometry representations are paired with a robust machine learning algorithm to showcase their descriptive and predictive powers for large, diverse, and complex molecular and biomolecular datasets. Extensive numerical experiments are carried out to demonstrate that the proposed DG-GL strategy outperforms other advanced methods in the predictions of drug discovery-related protein-ligand binding affinity, drug toxicity, and molecular solvation free energy. AVAILABILITY AND IMPLEMENTATION http://weilab.math.msu.edu/DG-GL/ Contact: wei@math.msu.edu.
Collapse
Affiliation(s)
- Duc Duy Nguyen
- Department of Mathematics, Michigan State University, East Lansing, 48824, Michigan
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, 48824, Michigan
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, Michigan
| |
Collapse
|
4
|
Liu B, Wang B, Zhao R, Tong Y, Wei GW. ESES: Software for Eulerian solvent excluded surface. J Comput Chem 2017; 38:446-466. [PMID: 28052350 DOI: 10.1002/jcc.24682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Abstract
Solvent excluded surface (SES) is one of the most popular surface definitions in biophysics and molecular biology. In addition to its usage in biomolecular visualization, it has been widely used in implicit solvent models, in which SES is usually immersed in a Cartesian mesh. Therefore, it is important to construct SESs in the Eulerian representation for biophysical modeling and computation. This work describes a software package called Eulerian solvent excluded surface (ESES) for the generation of accurate SESs in Cartesian grids. ESES offers the description of the solvent and solute domains by specifying all the intersection points between the SES and the Cartesian grid lines. Additionally, the interface normal at each intersection point is evaluated. Furthermore, for a given biomolecule, the ESES software not only provides the whole surface area, but also partitions the surface area according to atomic types. Homology theory is utilized to detect topological features, such as loops and cavities, on the complex formed by the SES. The sizes of loops and cavities are measured based on persistent homology with an evolutionary partial differential equation-based filtration. ESES is extensively validated by surface visualization, electrostatic solvation free energy computation, surface area and volume calculations, and loop and cavity detection and their size estimation. We used the Amber PBSA test set in our electrostatic solvation energy, area, and volume validations. Our results are either calibrated by analytical values or compared with those from the MSMS software. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, 48824
| | - Bao Wang
- Department of Mathematics, Michigan State University, East Lansing, Michigan, 48824
| | - Rundong Zhao
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, 48824
| | - Yiying Tong
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, 48824
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan, 48824.,Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, 48824.,Department of Biochemistry and, Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
5
|
Chen D. A New Poisson–Nernst–Planck Model with Ion–Water Interactions for Charge Transport in Ion Channels. Bull Math Biol 2016; 78:1703-26. [DOI: 10.1007/s11538-016-0196-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
6
|
Li J, Li S. Multiscale models of compact bone. INT J BIOMATH 2016. [DOI: 10.1142/s1793524516500479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work is concerned about multiscale models of compact bone. We focus on the lacuna–canalicular system. The interstitial fluid and the ions in it are regarded as solvent and others are treated as solute. The system has the characteristic of solvation process as well as non-equilibrium dynamics. The differential geometry theory of surfaces is adopted. We use this theory to separate the macroscopic domain of solvent from the microscopic domain of solute. We also use it to couple continuum and discrete descriptions. The energy functionals are constructed and then the variational principle is applied to the energy functionals so as to derive desirable governing equations. We consider both long-range polar interactions and short-range nonpolar interactions. The solution of governing equations leads to the minimization of the total energy.
Collapse
Affiliation(s)
- Junfeng Li
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| | - Shugang Li
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
7
|
Abstract
Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a quantitative model which correlates the topological persistence of fullerene central cavity with the total curvature energy of the fullerene structure, the proposed method is used for the prediction of fullerene isomer stability. The efficiency and robustness of the present method are verified by more than 500 fullerene molecules. It is shown that the proposed persistent homology based quantitative model offers good predictions of total curvature energies for ten types of fullerene isomers. The present work offers the first example to design object-oriented persistent homology to enhance or preserve desirable features in the original data during the filtration process and then automatically detect or extract the corresponding topological traits from the data.
Collapse
Affiliation(s)
- Bao Wang
- Department of Mathematics Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
8
|
Wang B, Wei GW. Parameter optimization in differential geometry based solvation models. J Chem Phys 2015; 143:134119. [PMID: 26450304 PMCID: PMC4602332 DOI: 10.1063/1.4932342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023] Open
Abstract
Differential geometry (DG) based solvation models are a new class of variational implicit solvent approaches that are able to avoid unphysical solvent-solute boundary definitions and associated geometric singularities, and dynamically couple polar and non-polar interactions in a self-consistent framework. Our earlier study indicates that DG based non-polar solvation model outperforms other methods in non-polar solvation energy predictions. However, the DG based full solvation model has not shown its superiority in solvation analysis, due to its difficulty in parametrization, which must ensure the stability of the solution of strongly coupled nonlinear Laplace-Beltrami and Poisson-Boltzmann equations. In this work, we introduce new parameter learning algorithms based on perturbation and convex optimization theories to stabilize the numerical solution and thus achieve an optimal parametrization of the DG based solvation models. An interesting feature of the present DG based solvation model is that it provides accurate solvation free energy predictions for both polar and non-polar molecules in a unified formulation. Extensive numerical experiment demonstrates that the present DG based solvation model delivers some of the most accurate predictions of the solvation free energies for a large number of molecules.
Collapse
Affiliation(s)
- Bao Wang
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| | - G W Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
9
|
Xia K, Wei GW. Multidimensional persistence in biomolecular data. J Comput Chem 2015; 36:1502-20. [PMID: 26032339 PMCID: PMC4485576 DOI: 10.1002/jcc.23953] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/24/2022]
Abstract
Persistent homology has emerged as a popular technique for the topological simplification of big data, including biomolecular data. Multidimensional persistence bears considerable promise to bridge the gap between geometry and topology. However, its practical and robust construction has been a challenge. We introduce two families of multidimensional persistence, namely pseudomultidimensional persistence and multiscale multidimensional persistence. The former is generated via the repeated applications of persistent homology filtration to high-dimensional data, such as results from molecular dynamics or partial differential equations. The latter is constructed via isotropic and anisotropic scales that create new simiplicial complexes and associated topological spaces. The utility, robustness, and efficiency of the proposed topological methods are demonstrated via protein folding, protein flexibility analysis, the topological denoising of cryoelectron microscopy data, and the scale dependence of nanoparticles. Topological transition between partial folded and unfolded proteins has been observed in multidimensional persistence. The separation between noise topological signatures and molecular topological fingerprints is achieved by the Laplace-Beltrami flow. The multiscale multidimensional persistent homology reveals relative local features in Betti-0 invariants and the relatively global characteristics of Betti-1 and Betti-2 invariants.
Collapse
Affiliation(s)
- Kelin Xia
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
10
|
Xia K, Wei GW. Persistent homology analysis of protein structure, flexibility, and folding. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:814-44. [PMID: 24902720 PMCID: PMC4131872 DOI: 10.1002/cnm.2655] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 05/04/2023]
Abstract
Proteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics, and transport is one of the most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification, and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. On the basis of the correlation between protein compactness, rigidity, and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix-based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology-function relationship of proteins.
Collapse
Affiliation(s)
- Kelin Xia
- Department of Mathematics, Michigan State University, MI 48824, USA
- Center for Mathematical Molecular Biosciences, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Center for Mathematical Molecular Biosciences, Michigan State University, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
11
|
Wei GW. Multiscale Multiphysics and Multidomain Models I: Basic Theory. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013; 12:10.1142/S021963361341006X. [PMID: 25382892 PMCID: PMC4220694 DOI: 10.1142/s021963361341006x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field.
Collapse
Affiliation(s)
- Guo-Wei Wei
- Department of Mathematics Michigan State University, MI 48824, USA Department of Electrical and Computer Engineering Michigan State University, MI 48824, USA Department of Biochemistry and Molecular Biology Michigan State University, MI 48824, USA
| |
Collapse
|
12
|
Xia K, Opron K, Wei GW. Multiscale multiphysics and multidomain models--flexibility and rigidity. J Chem Phys 2013; 139:194109. [PMID: 24320318 PMCID: PMC3855066 DOI: 10.1063/1.4830404] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/24/2013] [Indexed: 11/14/2022] Open
Abstract
The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O(N(2)) at most, where N is the number of atoms or residues, in contrast to O(N(3)) for Hamiltonian based methods. We demonstrate that the proposed FRI gives rise to accurate prediction of protein B-Factor for a set of 263 proteins. We show that a parameter free FRI is able to achieve about 95% accuracy of the parameter optimized FRI. An interpolation algorithm is developed to construct continuous atomic flexibility functions for visualization and use with CEWAR.
Collapse
Affiliation(s)
- Kelin Xia
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
13
|
Chen D, Wei GW. Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation. COMMUNICATIONS IN COMPUTATIONAL PHYSICS 2013; 13:285-324. [PMID: 23550030 PMCID: PMC3580801 DOI: 10.4208/cicp.050511.050811s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and validates the proposed model.
Collapse
Affiliation(s)
- Duan Chen
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author. (G.-W. Wei)
| |
Collapse
|
14
|
Feng X, Xia K, Tong Y, Wei GW. Geometric modeling of subcellular structures, organelles, and multiprotein complexes. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:1198-223. [PMID: 23212797 PMCID: PMC3568658 DOI: 10.1002/cnm.2532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/16/2012] [Accepted: 11/02/2012] [Indexed: 05/11/2023]
Abstract
Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multiprotein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes.
Collapse
Affiliation(s)
- Xin Feng
- Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
| | | | | | | |
Collapse
|
15
|
Chen D, Wei GW. Quantum dynamics in continuum for proton transport--generalized correlation. J Chem Phys 2012; 136:134109. [PMID: 22482542 DOI: 10.1063/1.3698598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As a key process of many biological reactions such as biological energy transduction or human sensory systems, proton transport has attracted much research attention in biological, biophysical, and mathematical fields. A quantum dynamics in continuum framework has been proposed to study proton permeation through membrane proteins in our earlier work and the present work focuses on the generalized correlation of protons with their environment. Being complementary to electrostatic potentials, generalized correlations consist of proton-proton, proton-ion, proton-protein, and proton-water interactions. In our approach, protons are treated as quantum particles while other components of generalized correlations are described classically and in different levels of approximations upon simulation feasibility and difficulty. Specifically, the membrane protein is modeled as a group of discrete atoms, while ion densities are approximated by Boltzmann distributions, and water molecules are represented as a dielectric continuum. These proton-environment interactions are formulated as convolutions between number densities of species and their corresponding interaction kernels, in which parameters are obtained from experimental data. In the present formulation, generalized correlations are important components in the total Hamiltonian of protons, and thus is seamlessly embedded in the multiscale/multiphysics total variational model of the system. It takes care of non-electrostatic interactions, including the finite size effect, the geometry confinement induced channel barriers, dehydration and hydrogen bond effects, etc. The variational principle or the Euler-Lagrange equation is utilized to minimize the total energy functional, which includes the total Hamiltonian of protons, and obtain a new version of generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation and generalized Kohn-Sham equation. A set of numerical algorithms, such as the matched interface and boundary method, the Dirichlet to Neumann mapping, Gummel iteration, and Krylov space techniques, is employed to improve the accuracy, efficiency, and robustness of model simulations. Finally, comparisons between the present model predictions and experimental data of current-voltage curves, as well as current-concentration curves of the Gramicidin A channel, verify our new model.
Collapse
Affiliation(s)
- Duan Chen
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
16
|
Zheng Q, Yang S, Wei GW. Biomolecular surface construction by PDE transform. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:291-316. [PMID: 22582140 PMCID: PMC3347862 DOI: 10.1002/cnm.1469] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 05/11/2023]
Abstract
This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-order PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable, and efficient approach for biomolecular surface generation in Cartesian meshes.
Collapse
Affiliation(s)
- Qiong Zheng
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Siyang Yang
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA
| |
Collapse
|
17
|
Franz T, Reddy BD. Numerical studies of problems in biophysics, biomechanics and mechanobiology. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:1-2. [PMID: 25830203 DOI: 10.1002/cnm.2464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
18
|
Wei GW, Zheng Q, Chen Z, Xia K. Variational multiscale models for charge transport. SIAM REVIEW. SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS 2012; 54:699-754. [PMID: 23172978 PMCID: PMC3501390 DOI: 10.1137/110845690] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle for chemo-electro-fluid systems. A number of computational algorithms is developed to implement the proposed new variational multiscale models in an efficient manner. A set of ten protein molecules and a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify the capability. Extensive numerical experiment is designed to validate the proposed variational multiscale models. A good quantitative agreement between our model prediction and the experimental measurement of current-voltage curves is observed for the Gramicidin A channel transport. This paper also provides a brief review of the field.
Collapse
Affiliation(s)
- Guo-Wei Wei
- Department of Mathematics Michigan State University, MI 48824, USA
- Department of Electrical and Computer Engineering Michigan State University, MI 48824, USA
- Address correspondences to Guo-Wei Wei.
| | - Qiong Zheng
- Department of Mathematics Michigan State University, MI 48824, USA
| | - Zhan Chen
- Department of Mathematics Michigan State University, MI 48824, USA
| | - Kelin Xia
- Department of Mathematics Michigan State University, MI 48824, USA
| |
Collapse
|