Error correction in intracellular transport: numerical investigation of rerouting of a pulse of misdirected axonal cargos in a dendrite.
Comput Biol Med 2012;
42:1196-203. [PMID:
23099210 DOI:
10.1016/j.compbiomed.2012.09.011]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 11/23/2022]
Abstract
This paper develops a transient three-kinetic state model that simulates rerouting of a pulse of axonal cargos that were initially misdirected to a dendrite. The following three cargo populations are included in the model: (i) anterogradely running cargos, (ii) retrogradely running cargos, and (iii) free (diffusion-driven) cargos that are detached from microtubules. The dynamics of cargo concentrations in various kinetic states are studied. It is demonstrated that the profile of the total cargo concentration is comprised of two major components. The first component is a pulse composed of anterogradely running cargos and the second component is a tail behind this pulse that is composed of free (diffusion-driven) and retrogradely running cargos. The total number of misdirected axonal cargos in the dendrite is also computed. The dependence of this quantity on the amount of time that passed from the moment when the pulse entered the dendrite and on kinetic constants describing transition rates between various kinetic states of misdirected cargos is investigated.
Collapse