1
|
Siewe N, Friedman A. Osteoporosis induced by cellular senescence: A mathematical model. PLoS One 2024; 19:e0303978. [PMID: 38805428 PMCID: PMC11132490 DOI: 10.1371/journal.pone.0303978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Osteoporosis is a disease characterized by loss of bone mass, where bones become fragile and more likely to fracture. Bone density begins to decrease at age 50, and a state of osteoporosis is defined by loss of more than 25%. Cellular senescence is a permanent arrest of normal cell cycle, while maintaining cell viability. The number of senescent cells increase with age. Since osteoporosis is an aging disease, it is natural to consider the question to what extend senescent cells induce bone density loss and osteoporosis. In this paper we use a mathematical model to address this question. We determine the percent of bone loss for men and women during age 50 to 100 years, and the results depend on the rate η of net formation of senescent cell, with η = 1 being the average rate. In the case η = 1, the model simulations are in agreement with empirical data. We also consider senolytic drugs, like fisetin and quercetin, that selectively eliminate senescent cells, and assess their efficacy in terms of reducing bone loss. For example, at η = 1, with estrogen hormonal therapy and early treatment with fisetin, bone density loss for women by age 75 is 23.4% (below osteoporosis), while with no treatment with fisetin it is 25.8% (osteoporosis); without even a treatment with estrogen hormonal therapy, bone loss of 25.3% occurs already at age 65.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematics and Statistics, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
2
|
Cook CV, Lighty AM, Smith BJ, Ford Versypt AN. A review of mathematical modeling of bone remodeling from a systems biology perspective. FRONTIERS IN SYSTEMS BIOLOGY 2024; 4:1368555. [PMID: 40012834 PMCID: PMC11864782 DOI: 10.3389/fsysb.2024.1368555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bone remodeling is an essential, delicately balanced physiological process of coordinated activity of bone cells that remove and deposit new bone tissue in the adult skeleton. Due to the complex nature of this process, many mathematical models of bone remodeling have been developed. Each of these models has unique features, but they have underlying patterns. In this review, the authors highlight the important aspects frequently found in mathematical models for bone remodeling and discuss how and why these aspects are included when considering the physiology of the bone basic multicellular unit, which is the term used for the collection of cells responsible for bone remodeling. The review also emphasizes the view of bone remodeling from a systems biology perspective. Understanding the systemic mechanisms involved in remodeling will help provide information on bone pathology associated with aging, endocrine disorders, cancers, and inflammatory conditions and enhance systems pharmacology. Furthermore, some features of the bone remodeling cycle and interactions with other organ systems that have not yet been modeled mathematically are discussed as promising future directions in the field.
Collapse
Affiliation(s)
- Carley V. Cook
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ariel M. Lighty
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Brenda J. Smith
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, United States
- Department of Obstetrics and Gynecology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
3
|
Bishop RT, Miller AK, Froid M, Nerlakanti N, Li T, Frieling JS, Nasr MM, Nyman KJ, Sudalagunta PR, Canevarolo RR, Silva AS, Shain KH, Lynch CC, Basanta D. The bone ecosystem facilitates multiple myeloma relapse and the evolution of heterogeneous drug resistant disease. Nat Commun 2024; 15:2458. [PMID: 38503736 PMCID: PMC10951361 DOI: 10.1038/s41467-024-46594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Multiple myeloma (MM) is an osteolytic malignancy that is incurable due to the emergence of treatment resistant disease. Defining how, when and where myeloma cell intrinsic and extrinsic bone microenvironmental mechanisms cause relapse is challenging with current biological approaches. Here, we report a biology-driven spatiotemporal hybrid agent-based model of the MM-bone microenvironment. Results indicate MM intrinsic mechanisms drive the evolution of treatment resistant disease but that the protective effects of bone microenvironment mediated drug resistance (EMDR) significantly enhances the probability and heterogeneity of resistant clones arising under treatment. Further, the model predicts that targeting of EMDR deepens therapy response by eliminating sensitive clones proximal to stroma and bone, a finding supported by in vivo studies. Altogether, our model allows for the study of MM clonal evolution over time in the bone microenvironment and will be beneficial for optimizing treatment efficacy so as to significantly delay disease relapse.
Collapse
Affiliation(s)
- Ryan T Bishop
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Anna K Miller
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Matthew Froid
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Niveditha Nerlakanti
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Tao Li
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jeremy S Frieling
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mostafa M Nasr
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Karl J Nyman
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Praneeth R Sudalagunta
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Rafael R Canevarolo
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ariosto Siqueira Silva
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kenneth H Shain
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Conor C Lynch
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Breast Cancer Exosomal microRNAs Facilitate Pre-Metastatic Niche Formation in the Bone: A Mathematical Model. Bull Math Biol 2023; 85:12. [PMID: 36607440 DOI: 10.1007/s11538-022-01117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Pre-metastatic niche is a location where cancer cells, separating from a primary tumor, find "fertile soil" for growth and proliferation, ensuring successful metastasis. Exosomal miRNAs of breast cancer are known to enter the bone and degrade it, which facilitates cancer cells invasion into the bone interior and ensures its successful colonization. In this paper, we use a mathematical model to first describe, in health, the continuous remodeling of the bone by bone-forming osteoblasts, bone-resorbing osteoclasts and the RANKL-OPG-RANK signaling system, which keeps the balance between bone formation and bone resorption. We next demonstrate how breast cancer exosomal miRNAs disrupt this balance, either by increasing or by decreasing the ratio of osteoclasts/osteoblasts, which results in abnormal high bone resorption or abnormal high bone forming, respectively, and in bone weakening in both cases. Finally we consider the case of abnormally high resorption and evaluate the effect of drugs, which may increase bone density to normal level, thus protecting the bone from invasion by cancer cells.
Collapse
|
5
|
Baldonedo JG, Fernández JR, Segade A. Spatial extension of a bone remodeling dynamics model and its finite element analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3429. [PMID: 33314671 DOI: 10.1002/cnm.3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/11/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
There are many works dealing with the dynamics of bone remodeling, proposing increasingly complex and complete models. In the recent years, the efforts started to focus on developing models that not only reproduce the temporal evolution, but also include the spatial aspects of this phenomenon. In this work, we propose the spatial extension of an existing model that includes the dynamics of osteocytes. The spatial dependence is modeled in terms of a linear diffusion, as proposed in previous works dealing with related problems. The resulting model is then written in its variational form, and fully discretized using the well-known finite element method and a combination of the implicit and explicit Euler schemes. The numerical algorithm is then analyzed, proving some a priori error estimates and its linear convergence. Finally, we extend the examples already published for the temporal model to one and two dimensions, showing the dynamics of the solution in the spatial domain.
Collapse
Affiliation(s)
- Jacobo G Baldonedo
- CINTECX, Departamento de Ingeniería Mecánica, Universidade de Vigo, Vigo, Spain
| | - José R Fernández
- Departamento de Matemática Aplicada I, Universidade de Vigo, Vigo, Spain
| | - Abraham Segade
- CINTECX, Departamento de Ingeniería Mecánica, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
6
|
Ait Oumghar I, Barkaoui A, Chabrand P. Toward a Mathematical Modeling of Diseases' Impact on Bone Remodeling: Technical Review. Front Bioeng Biotechnol 2020; 8:584198. [PMID: 33224935 PMCID: PMC7667152 DOI: 10.3389/fbioe.2020.584198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
A wide variety of bone diseases have hitherto been discovered, such as osteoporosis, Paget's disease, osteopetrosis, and metastatic bone disease, which are not well defined in terms of changes in biochemical and mechanobiological regulatory factors. Some of these diseases are secondary to other pathologies, including cancer, or to some clinical treatments. To better understand bone behavior and prevent its deterioration, bone biomechanics have been the subject of mathematical modeling that exponentially increased over the last years. These models are becoming increasingly complex. The current paper provides a timely and critical analysis of previously developed bone remodeling mathematical models, particularly those addressing bone diseases. Besides, mechanistic pharmacokinetic/pharmacodynamic (PK/PD) models, which englobe bone disease and its treatment's effect on bone health. Therefore, the review starts by presenting bone remodeling cycle and mathematical models describing this process, followed by introducing some bone diseases and discussing models of pathological mechanisms affecting bone, and concludes with exhibiting the available bone treatment procedures considered in the PK/PD models.
Collapse
Affiliation(s)
- Imane Ait Oumghar
- Laboratoire des Energies Renouvelables et Matériaux Avancés (LERMA), Université Internationale de Rabat, Rabat-Sala El Jadida, Morocco
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Abdelwahed Barkaoui
- Laboratoire des Energies Renouvelables et Matériaux Avancés (LERMA), Université Internationale de Rabat, Rabat-Sala El Jadida, Morocco
| | - Patrick Chabrand
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| |
Collapse
|
7
|
Zhang Y, Zhen C, Yang Q, Ji B. Mathematical modelling of the role of GADD45β in the pathogenesis of multiple myeloma. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192152. [PMID: 32537207 PMCID: PMC7277253 DOI: 10.1098/rsos.192152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/15/2020] [Indexed: 05/14/2023]
Abstract
Multiple myeloma (MM) is an incurable disease with relatively high morbidity and mortality rates. Great efforts were made to develop nuclear factor-kappa B (NF-κB)-targeted therapies against MM disease. However, these treatments influence MM cells as well as normal cells, inevitably causing serious side effects. Further research showed that NF-κB signalling promotes the survival of MM cells by interacting with JNK signalling through growth arrest and DNA damage-inducible beta (GADD45β), the downstream module of NF-κB signalling. The GADD45β-targeted intervention was suggested to be an effective and MM cell-specific treatment. However, the underlying mechanism through which GADD45β promotes the survival of MM cells is usually ignored in the previous models. A mathematical model of MM is built in this paper to investigate how NF-κB signalling acts along with JNK signalling through GADD45β and MKK7 to promote the survival of MM cells. The model cannot only mimic the variations in bone cells, the bone volume and MM cells with time, but it can also examine how the NF-κB pathway acts with the JNK pathway to promote the development of MM cells. In addition, the model also investigates the efficacies of GADD45β- and NF-κB-targeted treatments, suggesting that GADD45β-targeted therapy is more effective but has no apparent side effects. The simulation results match the experimental observations. It is anticipated that this model could be employed as a useful tool to initially investigate and even explore potential therapies involving the NF-κB and JNK pathways in the future.
Collapse
Affiliation(s)
- Yao Zhang
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
| | - Changqing Zhen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, People's Republic of China
| | - Qing Yang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, People's Republic of China
| | - Bing Ji
- School of Control Science and Engineering, Shandong University, Jinan 250061, People's Republic of China
- Author for correspondence: Bing Ji e-mail:
| |
Collapse
|
8
|
Rao SR, Edwards CM, Edwards JR. Modeling the Human Bone-Tumor Niche: Reducing and Replacing the Need for Animal Data. JBMR Plus 2020; 4:e10356. [PMID: 32258970 PMCID: PMC7117847 DOI: 10.1002/jbm4.10356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Bone is the most common site for cancer metastasis. Understanding the interactions within the complex, heterogeneous bone-tumor microenvironment is essential for the development of new therapeutics. Various animal models of tumor-induced bone disease are routinely used to provide valuable information on the relationship between cancer cells and the skeleton. However, new model systems exist that offer an alternative approach to the use of animals and might more accurately reveal the cellular interactions occurring within the human bone-tumor niche. This review highlights replacement models that mimic the bone microenvironment and where cancer metastases and tumor growth might be assessed alongside bone turnover. Such culture models include the use of calcified regions of animal tissue and scaffolds made from bone mineral hydroxyapatite, synthetic polymers that can be manipulated during manufacture to create structures resembling trabecular bone surfaces, gel composites that can be modified for stiffness and porosity to resemble conditions in the tumor-bone microenvironment. Possibly the most accurate model system involves the use of fresh human bone samples, which can be cultured ex vivo in the presence of human tumor cells and demonstrate similar cancer cell-bone cell interactions as described in vivo. In addition, the use of mathematical modeling and computational biology approaches provide an alternative to preliminary animal testing. The use of such models offers the capacity to mimic significant elements of the human bone-tumor environment, and complement, refine, or replace the use of preclinical models. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Srinivasa R Rao
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK.,Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| | - Claire M Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK.,Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| | - James R Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK
| |
Collapse
|
9
|
Mathematical modelling of the role of Endo180 network in the development of metastatic bone disease in prostate cancer. Comput Biol Med 2020; 117:103619. [PMID: 32072971 DOI: 10.1016/j.compbiomed.2020.103619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 12/29/2022]
Abstract
Metastatic bone disease (MBD) is a common complication of advanced cancer and recent research suggests that Endo180 expression is dysregulated through the TGFβ-TGFβR-SMAD2/3 signalling pathway during the invasion of tumour cells in the development of MBD. We here provide a model for the dysregulation of the Endo180 network to demonstrate its vital contribution to bone destruction as well as tumour cell growth. The model consisted of a set of ordinary differential equations and reconstructed variations in the bone cells, resultant bone volume, and biochemical factors involved in the TGFβ-TGFβR-SMAD2/3 signalling pathway over time. The model also investigated the underlying mechanism in which the change of TGFβ affects the TGFβ-TGFβR-SMAD2/3 signalling pathway and the resultant Endo180 expression in osteoblastic and tumour cells. The model links the appearance of tumour cells with the inhibition of TGFβ binding to its receptors on osteoblastic cells, to affect TGFβ-TGFβR-SMAD2/3 signalling and Endo180 expression. Temporal variation in bone cells, bone volume, and the biochemical factors involved in the TGFβ-TGFβR-SMAD2/3 pathway as demonstrated in the model simulations agree with published experimental data. The model can be refined based on further discoveries but allows the influence of Endo180 network dysregulation on bone remodelling in MBD to be established. This model could aid in the development of Endo180 targeted therapies for MBD in the future.
Collapse
|
10
|
Jin Y, Shang Y, Liu H, Ding L, Tong X, Tu H, Yuan G, Zhou F. A Retrospective Analysis: A Novel Index Predicts Survival and Risk-Stratification for Bone Destruction in 419 Newly Diagnosed Multiple Myelomas. Onco Targets Ther 2019; 12:10587-10596. [PMID: 31819538 PMCID: PMC6899072 DOI: 10.2147/ott.s229122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Objective Multiple myeloma (MM) patients with bone destruction are difficult to restore, so it is of great clinical significance to further explore the factors affecting MM bone destruction. Methods and results This study retrospectively analyzed 419 cases with MM. Multiple linear regression analysis showed that those MM patients with a higher concentration of Ca2+ in serum, higher positive rate of CD138 immuno-phenotype and advanced in stage with 13q34 deletion in cytogenetics would be more prone to bone destruction, while total bile acid (TBA) and kappa chain isotope negatively correlated with bone destruction in MM patients. The Kaplan-Meier analysis indicated that Ca2+, serum β2-microglobulin (β2-MG), hemoglobin (HGB), creatinine (CREA), uric acid (UA) and age correlated with the survival of bone destruction in MM patients. Cox regression analysis further showed that the independent prognostic factors of β2-MG and CREA had a higher risk for early mortality in bone destruction patients. Moreover, an index was calculated based on β2-MG and globulin (GLB) to white blood cell (WBC) ratio to predict the poor survival of bone destruction patients. Conclusion We provide a novel marker to predict the prognosis of myeloma patients using routine examination method instead of bone marrow aspiration, and provide a reference for clinical evaluation.
Collapse
Affiliation(s)
- Yanxia Jin
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China.,Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China
| | - Yufeng Shang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Hailing Liu
- Department of Clinical Hematology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, People's Republic of China
| | - Lu Ding
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Honglei Tu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Guolin Yuan
- Department of Hematology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China.,Key Laboratory of Tumor Biological Behavior of Hubei Province, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| |
Collapse
|
11
|
Weis M, Baillie R, Friedrich C. Considerations for Adapting Pre-existing Mechanistic Quantitative Systems Pharmacology Models for New Research Contexts. Front Pharmacol 2019; 10:416. [PMID: 31057411 PMCID: PMC6482345 DOI: 10.3389/fphar.2019.00416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
|
12
|
Ji B, Zhang Y, Zhen C, Fagan MJ, Yang Q. Mathematical modelling of bone remodelling cycles including the NFκB signalling pathway. Comput Biol Med 2019; 107:257-264. [DOI: 10.1016/j.compbiomed.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 01/04/2023]
|
13
|
Walk JC, Ayati BP, Holstein SA. Modeling the Effects of Multiple Myeloma on Kidney Function. Sci Rep 2019; 9:1726. [PMID: 30741957 PMCID: PMC6370764 DOI: 10.1038/s41598-018-38129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM), a plasma cell cancer, is associated with many health challenges, including damage to the kidney by tubulointerstitial fibrosis. We develop a mathematical model which captures the qualitative behavior of the cell and protein populations involved. Specifically, we model the interaction between cells in the proximal tubule of the kidney, free light chains, renal fibroblasts, and myeloma cells. We analyze the model for steady-state solutions to find a mathematically and biologically relevant stable steady-state solution. This foundational model provides a representation of dynamics between key populations in tubulointerstitial fibrosis that demonstrates how these populations interact to affect patient prognosis in patients with MM and renal impairment.
Collapse
Affiliation(s)
- Julia C Walk
- Concordia College, Department of Mathematics, Moorhead, 56562, USA.
| | - Bruce P Ayati
- University of Iowa, Department of Mathematics, Iowa City, 52242, USA.,University of Iowa, Program in Applied Mathematical and Computational Sciences, Iowa City, 52242, USA.,University of Iowa, Department of Orthopaedics and Rehabilitation, Iowa City, 52242, USA
| | - Sarah A Holstein
- University of Nebraska Medical Center, Division of Oncology & Hematology, Omaha, 68198, USA
| |
Collapse
|
14
|
Predictive computational modeling to define effective treatment strategies for bone metastatic prostate cancer. Sci Rep 2016; 6:29384. [PMID: 27411810 PMCID: PMC4944130 DOI: 10.1038/srep29384] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/17/2016] [Indexed: 12/27/2022] Open
Abstract
The ability to rapidly assess the efficacy of therapeutic strategies for incurable bone metastatic prostate cancer is an urgent need. Pre-clinical in vivo models are limited in their ability to define the temporal effects of therapies on simultaneous multicellular interactions in the cancer-bone microenvironment. Integrating biological and computational modeling approaches can overcome this limitation. Here, we generated a biologically driven discrete hybrid cellular automaton (HCA) model of bone metastatic prostate cancer to identify the optimal therapeutic window for putative targeted therapies. As proof of principle, we focused on TGFβ because of its known pleiotropic cellular effects. HCA simulations predict an optimal effect for TGFβ inhibition in a pre-metastatic setting with quantitative outputs indicating a significant impact on prostate cancer cell viability, osteoclast formation and osteoblast differentiation. In silico predictions were validated in vivo with models of bone metastatic prostate cancer (PAIII and C4-2B). Analysis of human bone metastatic prostate cancer specimens reveals heterogeneous cancer cell use of TGFβ. Patient specific information was seeded into the HCA model to predict the effect of TGFβ inhibitor treatment on disease evolution. Collectively, we demonstrate how an integrated computational/biological approach can rapidly optimize the efficacy of potential targeted therapies on bone metastatic prostate cancer.
Collapse
|
15
|
Ji B, Genever PG, Fagan MJ. A virtual approach to evaluate therapies for management of multiple myeloma induced bone disease. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02735. [PMID: 26198466 PMCID: PMC4989444 DOI: 10.1002/cnm.2735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Multiple myeloma bone disease is devastating for patients and a major cause of morbidity. The disease leads to bone destruction by inhibiting osteoblast activity while stimulating osteoclast activity. Recent advances in multiple myeloma research have improved our understanding of the pathogenesis of multiple myeloma-induced bone disease and suggest several potential therapeutic strategies. However, the effectiveness of some potential therapeutic strategies still requires further investigation and optimization. In this paper, a recently developed mathematical model is extended to mimic and then evaluate three therapies of the disease, namely: bisphosphonates, bortezomib and TGF-β inhibition. The model suggests that bisphosphonates and bortezomib treatments not only inhibit bone destruction, but also reduce the viability of myeloma cells. This contributes to the current debate as to whether bisphosphonate therapy has an anti-tumour effect. On the other hand, the analyses indicate that treatments designed to inhibit TGF-β do not reduce bone destruction, although it appears that they might reduce the viability of myeloma cells, which again contributes to the current controversy regarding the efficacy of TGF-β inhibition in multiple myeloma-induced bone disease.
Collapse
Affiliation(s)
- Bing Ji
- School of Control Science and EngineeringShandong UniversityJinan250061People's Republic of China
| | | | | |
Collapse
|
16
|
Ji B, Yang Q, Genever PG, Patton RJ, Fagan MJ. A predator-prey based mathematical model of the bone remodelling cycle: exploring the relationship between the model parameters and biochemical factors. Proc Inst Mech Eng H 2014; 228:1035-42. [PMID: 25316684 DOI: 10.1177/0954411914554633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone remodelling is a vital process which enables bone to repair, renew and optimize itself. Disorders in the bone remodelling process are inevitably manifested in bone-related diseases, such as hypothyroidism, primary hyperparathyroidism and osteoporosis. In our previous work, a predator-prey based mathematical model was developed to simulate bone remodelling cycles under normal and two pathological conditions, hypothyroidism and primary hyperparathyroidism, for trabecular bone at a fixed point. However, the biochemical meanings of the model parameters were not fully explored. This article first extends the previous work by proposing relationships between the model parameters and biochemical factors involved in the bone remodelling process and by examining whether those relationships do predict the behaviours observed in vivo. The model is then applied to the simulation and investigation of bone remodelling of postmenopausal osteoporosis. The proposed connections are supported by good agreement between the model simulations and published experimental observations for the normal condition and all three pathological variations in bone remodelling.
Collapse
Affiliation(s)
- Bing Ji
- School of Control Science and Engineering, Shandong University, Jinan, P.R. China
| | - Qing Yang
- Shandong Provincial Hospital, Shandong University, Jinan, P.R. China
| | | | | | | |
Collapse
|