1
|
Chen YC, Wang KH, Lin CL. Personalized prosthesis design in all-on-4® treatment through deep learning-accelerated structural optimization. J Dent Sci 2024; 19:2140-2149. [PMID: 39347035 PMCID: PMC11437609 DOI: 10.1016/j.jds.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/15/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose The All-on-4® treatment concept is a dental procedure that utilizes only four dental implants to support a fixed prosthesis, providing full-arch rehabilitation with affordable cost and speedy treatment courses. Although the placement of all-on-4® implants has been researched in the past, little attention was paid to the structural design of the prosthetic framework. Materials and methods This research proposed a new approach to optimize the structure of denture framework called BESO-Net, which is a bidirectional evolutionary structural optimization (BESO) based convolutional neural network (CNN). The approach aimed to reduce the use of material for the framework, such as Ti-6Al-4V, while maintaining structural strength. The BESO-Net was designed as a one-dimensional CNN based on Inception V3, trained using finite element analysis (FEA) data from 14,994 design configurations, and evaluated its training performance, generalization capability, and computation efficiency. Results The results suggested that BESO-Net accurately predicted the optimal structure of the denture framework in various mandibles with different implant and load settings. The average error was found to be 0.29% for compliance and 11.26% for shape error when compared to the traditional BESO combined with FEA. Additionally, the computational time required for structural optimization was significantly reduced from 6.5 h to 45 s. Conclusion The proposed approach demonstrates its applicability in clinical settings to quickly find personalized All-on-4® framework structure that can significantly reduce material consumption while maintaining sufficient stiffness.
Collapse
Affiliation(s)
- Yung-Chung Chen
- School of Dentistry & Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Prosthodontics, Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Hsin Wang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Lun Lin
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Bolshakov P, Kuchumov AG, Kharin N, Akifyev K, Statsenko E, Silberschmidt VV. Method of computational design for additive manufacturing of hip endoprosthesis based on basic-cell concept. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3802. [PMID: 38246644 DOI: 10.1002/cnm.3802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Endoprosthetic hip replacement is the conventional way to treat osteoarthritis or a fracture of a dysfunctional joint. Different manufacturing methods are employed to create reliable patient-specific devices with long-term performance and biocompatibility. Recently, additive manufacturing has become a promising technique for the fabrication of medical devices, because it allows to produce complex samples with various structures of pores. Moreover, the limitations of traditional fabrication methods can be avoided. It is known that a well-designed porous structure provides a better proliferation of cells, leading to improved bone remodeling. Additionally, porosity can be used to adjust the mechanical properties of designed structures. This makes the design and choice of the structure's basic cell a crucial task. This study focuses on a novel computational method, based on the basic-cell concept to design a hip endoprosthesis with an unregularly complex structure. A cube with spheroid pores was utilized as a basic cell, with each cell having its own porosity and mechanical properties. A novelty of the suggested method is in its combination of the topology optimization method and the structural design algorithm. Bending and compression cases were analyzed for a cylinder structure and two hip implants. The ability of basic-cell geometry to influence the structure's stress-strain state was shown. The relative change in the volume of the original structure and the designed cylinder structure was 6.8%. Computational assessments of a stress-strain state using the proposed method and direct modeling were carried out. The volumes of the two types of implants decreased by 9% and 11%, respectively. The maximum von Mises stress was 600 MPa in the initial design. After the algorithm application, it increased to 630 MPa for the first type of implant, while it is not changing in the second type of implant. At the same time, the load-bearing capacity of the hip endoprostheses was retained. The internal structure of the optimized implants was significantly different from the traditional designs, but better structural integrity is likely to be achieved with less material. Additionally, this method leads to time reduction both for the initial design and its variations. Moreover, it enables to produce medical implants with specific functional structures with an additive manufacturing method avoiding the constraints of traditional technologies.
Collapse
Affiliation(s)
- Pavel Bolshakov
- Department of Machine Science and Engineering Graphics, Tupolev Kazan National Research Technical University, Kazan, Russia
| | - Alex G Kuchumov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, Perm, Russia
- Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, Perm, Russia
| | - Nikita Kharin
- Department of Theoretical Mechanics, N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia
- Institute of Engineering, Kazan Federal University, Kazan, Russia
| | - Kirill Akifyev
- Department of Theoretical Mechanics, N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia
| | - Evgeny Statsenko
- Laboratory of X-ray Tomography, Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russia
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, UK
| |
Collapse
|
3
|
Chen YC, Fok A. Shape optimization of a 2-unit cantilevered posterior resin-bonded fixed dental prosthesis. J Prosthet Dent 2023; 129:181-190. [PMID: 34023142 DOI: 10.1016/j.prosdent.2021.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023]
Abstract
STATEMENT OF PROBLEM The cantilevered resin-bonded fixed dental prosthesis (RBFDP) is a feasible and minimally invasive treatment option to restore a single missing tooth, especially when the missing tooth space is small (<7 mm) and cost-effectiveness is essential. However, its long-term survival needs to be improved by increasing its structural strength and interfacial adhesion. PURPOSE The purpose of this study was to improve the interfacial bonding and to enhance the structural strength of a 2-unit inlay-retained cantilevered RBFDP with a 2-step numerical shape optimization. MATERIAL AND METHODS A finite element model of a mandibular first molar with a second premolar pontic was constructed. A load of 200 N simulating the average occlusal force was applied on the mesial fossa of the pontic. In the first step, an in-house user-defined material subroutine was used to generate the cavity preparation. The subroutine iteratively changed the tooth tissues next to the pontic to composite resin according to the local stresses until convergence was achieved. In the second step, the subroutine was used to optimize the placement of fibers in the pontic by placing fibers in high-stress regions. To assess the debonding resistance and load capacity of the optimized and conventional designs, further analyses were conducted to compare their stresses at the tooth-restoration interface and those within the restoration. RESULTS Shape optimization resulted in a shovel-shaped cavity preparation and a pontic with fibers placed near the occlusal surface of the connector region. With the optimized cavity preparation only, the maximum principal stress within the restoration and the tooth structure was reduced from 639.4 MPa to 525.4 MPa and from 381.7 MPa to 352.8 MPa, respectively. With the embedded fibers, the shovel-shaped cavity preparation reduced the maximum interfacial tensile stress by approximately 70% (conventional: 189.6 MPa versus optimized: 57.0 MPa) and the peak maximum principal stress of the veneering composite resin by 45% (conventional: 638.8 MPa versus optimized: 356.5 MPa). The peak maximum principal stress was also reduced for the remaining tooth structure by approximately 30% (conventional: 372.2 MPa versus optimized: 253.1 MPa). CONCLUSIONS Shape optimization determined that a shovel-shaped retainer with fibers placed near the occlusal surface of the connector area can collectively reduce the interfacial and structural stresses of the 2-unit cantilevered fiber-reinforced RBFDP. This may offer a more conservative treatment option for replacing a single missing tooth.
Collapse
Affiliation(s)
- Yung-Chung Chen
- Assistant Professor, School of Dentistry & Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (R.O.C); Chief, Division of Prosthodontics, Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan (R.O.C).
| | - Alex Fok
- Professor and Director, Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, Minn
| |
Collapse
|
4
|
Hypo and hyperbaric pressure effect on the fracture resistance of three types of dental crowns: PFM, LD, and Y-TZP. J Oral Biosci 2022; 64:245-252. [DOI: 10.1016/j.job.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022]
|
5
|
Niroomand MR, Toutounchi H, Mousavi S. How to design a more stable dental implant: A topology optimization approach. Proc Inst Mech Eng H 2021; 236:341-348. [PMID: 34696643 DOI: 10.1177/09544119211048012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The body shape design is one of the most influential factors in the success of dental implants. This study presents a strategy to design the geometrical features of a threaded implant. The topology optimization technique is applied to identify appropriate spaces in the implant body to be removed for bone growth. The exact shape, position, and dimensions of the spaces are determined using a finite element model. This model consists of a mandibular segment, implant, abutment, and crown. During the optimization process, some grooves and holes are created in the implant by removing redundant materials. Bone growth into these spaces causes mechanical locking between the implant and surrounding bone. The smoothing process is performed following the optimization to remove stress concentration. The results indicate that this design strategy reduces the maximum displacement of the implant by approximately 20%. Moreover, a reduction in the implant's volume and an increase in the contact area between the implant and bone are obtained. All mentioned issues would increase the stability and reduce the risk of implant loosening. Finally, using conventional production methods, the optimal implant was produced from titanium alloy to demonstrate the possibility of production of the proposed design.
Collapse
Affiliation(s)
| | - Hamidreza Toutounchi
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sayedali Mousavi
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
6
|
The advances of topology optimization techniques in orthopedic implants: A review. Med Biol Eng Comput 2021; 59:1673-1689. [PMID: 34363576 DOI: 10.1007/s11517-021-02361-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/05/2021] [Indexed: 10/20/2022]
Abstract
Metal implants are widely used in the treatment of orthopedic diseases. However, owing to the mismatched elastic modulus of the bone and implants, stress shielding often occurs clinically which can result in failure of the implant or fractures around the implant. Topology optimization (TO) is a technique that can provide more efficient material distribution according to the objective function under the special load and boundary conditions. Several researchers have paid close attention to TO for optimal design of orthopedic implants. Thanks to the development of additive manufacturing (AM), the complex structure of the TO design can be fabricated. This article mainly focuses on the current stage of TO technique with respect to the global layout and hierarchical structure in orthopedic implants. In each aspect, diverse implants in different orthopedic fields related to TO design are discussed. The characteristics of implants, methods of TO, validation methods of the newly designed implants, and limitations of current research have been summarized. The review concludes with future challenges and directions for research. Wang TO design of global layout and local structure of implants in diverse fields of orthopedic.
Collapse
|
7
|
Denry I, Abdelaal M, Dawson DV, Holloway JA, Kelly JR. Effect of crystalline phase assemblage on reliability of 3Y-TZP. J Prosthet Dent 2021; 126:238-247. [PMID: 32807403 PMCID: PMC7882009 DOI: 10.1016/j.prosdent.2020.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 11/21/2022]
Abstract
STATEMENT OF PROBLEM Strengthening mechanisms of zirconia ceramics stabilized with 3 mol% yttria (3Y-TZP) are complex and dictated by the crystalline phase assemblage. Although their clinical performance for dental restorations has been excellent, there is evidence that framework fractures do occur and have been underreported. Meanwhile, the relationship between phase assemblage and reliability of 3Y-TZP is not properly understood. PURPOSE The purpose of this in vitro study was to elucidate the relationship between crystalline phase assemblage and the reliability of 3Y-TZP and to calculate the associated probabilities of survival. MATERIAL AND METHODS Disks of 3Y-TZP were prepared from cylindrical blanks and randomly assigned to 12 experimental groups (n=20 per group). Different crystalline phase assemblages were produced by either varying the sintering temperature from 1350 °C to 1600 °C and/or treating the surface by airborne-particle abrasion with 50-mm alumina particles at a pressure of 0.2 MPa for 1 minute with or without subsequent heat treatment. Crystalline phases were analyzed by standard and grazing incidence X-ray diffraction (GIXRD). The relationship between phase assemblage and reliability was determined by measuring the biaxial flexural strength (BFS) according to ISO standard 6872 and by using Weibull statistics to calculate the Weibull modulus (m), probability of survival, and maximum allowable stresses. XRD results were analyzed by ANOVA to detect statistically significant differences between groups. Adjustment for all pairwise group comparisons was made using the Tukey method (α=.05). RESULTS Standard incidence XRD confirmed the presence of a small amount of cubic phase after sintering at 1350 °C. A cubic-derived nontransformable tetragonal t'-phase was observed at sintering temperatures of 1450 °C and above, the amount of which increased linearly. GIXRD revealed that airborne-particle abraded groups sintered at 1350 °C and 1600 °C had the highest variability in monoclinic phase fraction as a function of depth. These groups were also associated with the lowest reliability. Groups as-sintered at 1350 °C and 1600 °C had the lowest modulus (m=8.1 [0.5] and 7.0 [0.8], respectively) and probability of survival (Ps) for a maximum allowable stress of 700 MPa, while treated groups sintered at 1450 °C and 1550 °C were associated with the highest modulus (from 15.0 [1.4] to 20.9 [1.4]) and Ps (≥0.9999). The lower strength and reliability of groups sintered at 1600 °C was consistent with the presence of a significant amount of nontransformable t'-phase. The pattern of BFS results indicated that ferro-elastic domain switching was a dominant strengthening mechanism in 3Y-TZP. CONCLUSIONS The present study first reported on the detrimental effect of the cubic-derived nontransformable t'-phase on the mechanical properties of 3Y-TZP. It was demonstrated that phase assemblage determined reliability and was directly linked to the probability of survival.
Collapse
Affiliation(s)
- Isabelle Denry
- Professor, Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Department of Prosthodontics, Iowa City, Iowa.
| | - Maged Abdelaal
- Clinical Assistant Professor, Division of Prosthodontics, Department of General Dentistry, East Carolina University School of Dental Medicine, Greenville, NC
| | - Deborah V Dawson
- Professor, Department of Biostatistics, University of Iowa College of Public Health, Iowa City, Iowa
| | - Julie A Holloway
- Professor and Head, Department of Prosthodontics, University of Iowa College of Dentistry, Iowa City, Iowa
| | - John Robert Kelly
- Professor, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Conn
| |
Collapse
|
8
|
Topology Optimization for Maximizing the Fracture Resistance of Periodic Quasi-Brittle Composites Structures. MATERIALS 2020; 13:ma13153279. [PMID: 32717939 PMCID: PMC7436094 DOI: 10.3390/ma13153279] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022]
Abstract
Topology optimization for maximizing the fracture resistance of particle-matrix composites is investigated. The methodology developed in our previous works, combining evolutionary topology optimization and phase field method to fracture embedding interfacial damage, is applied and extended to periodic composites and multiple objectives. On one hand, we constrain the periodicity of unit cells geometry and conduct their topology optimization for one given load prescribed over the whole structure. On the other hand, we consider a single unit cell whose topology is optimized with respect to the fracture energy criterion when subjected to multiple loads. Size effects are investigated. We show that significant enhancement of the fracture resistance can be achieved for the studied composite structures by the present method. In addition, a first attempt to fracture resistance enhancement of a unit cell associated with a material is investigated for multiple loads, exhibiting a complex optimized microstructure.
Collapse
|
9
|
Neto CF, Santos GC, Santos MJMC. Influence of the Fabrication Technique on the Marginal and Internal Adaptation of Ceramic Onlays. Oper Dent 2020; 45:163-172. [DOI: 10.2341/19-014-l] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
This study aimed to evaluate the marginal and internal adaptation of partial coverage crowns (ceramic onlays) fabricated with Press, CEREC BlueCam, and CEREC OmniCam systems, using two preparation designs and evaluating the internal discrepancies at different locations. Two phantom maxillary premolars (master teeth) received different preparation designs, with (BX) and without (NB) a modified occlusal box with round internal angles. Sixty IPS e-max ceramic restorations were fabricated with three systems: Press (n=20), CEREC BlueCam (n=20), and CEREC OmniCam (n=20). Both marginal and internal discrepancy width were measured by using a stereomicroscope at ×25 magnification. The data were evaluated statistically using analysis of variance followed by Tukey's Honestly Significant Difference test (α=0.05). The ceramic restorations fabricated with the Press system presented significantly smaller marginal and internal disadaptations than the BlueCam and OmniCam CEREC systems (p<0.0001). Regarding the preparation designs, preparation BX presented the smallest marginal discrepancies for all fabrication systems and larger internal discrepancies than for restorations fabricated with the Press system. The occlusal location presented a larger internal discrepancy compared with the axial locations. Although the three systems resulted in the fabrication of restorations within a clinically acceptable adaptation with marginal discrepancies below 100 μm, the Press system presented the smallest marginal and internal discrepancies. An improved marginal adaptation was observed in the preparation design with a modified occlusal box with rounded internal angles.
Collapse
Affiliation(s)
- CF Neto
- Constantino Fernandes Neto, DDS, MSc candidate, Bauru Dental School, Universidade de São Paulo, Bauru SP, Brazil
| | - GC Santos
- Gildo Coelho Santos, DDS, MSc, PhD, associate professor, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - MJMC Santos
- Gildo Coelho Santos, DDS, MSc, PhD, associate professor, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Niroomand MR, Arabbeiki M. Implant stability in different implantation stages: Analysis of various interface conditions. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
11
|
Effect of different implant configurations on biomechanical behavior of full-arch implant-supported mandibular monolithic zirconia fixed prostheses. J Mech Behav Biomed Mater 2019; 102:103490. [PMID: 31877512 DOI: 10.1016/j.jmbbm.2019.103490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
Abstract
Mechanical failure of zirconia-based full-arch implant-supported fixed dental prostheses (FAFDPs) remains a critical issue in prosthetic dentistry. The option of full-arch implant treatment and the biomechanical behaviour within a sophisticated screw-retained prosthetic structure have stimulated considerable interest in fundamental and clinical research. This study aimed to analyse the biomechanical responses of zirconia-based FAFDPs with different implant configurations (numbers and distributions), thereby predicting the possible failure sites and the optimum configuration from biomechanical aspect by using finite element method (FEM). Five 3D finite element (FE) models were constructed with patient-specific heterogeneous material properties of mandibular bone. The results were reported using volume-averaged von-Mises stresses (σVMVA) to eliminate numerical singularities. It was found that wider placement of multi-unit copings was preferred as it reduces the cantilever effect on denture. Within the limited areas of implant insertion, the adoption of angled multi-unit abutments allowed the insertion of oblique implants in the bone and wider distribution of the multi-unit copings in the prosthesis, leading to lower stress concentration on both mandibular bone and prosthetic components. Increasing the number of supporting implants in a FAFDPs reduced loading on each implant, although it may not necessarily reduce the stress concentration in the most posterior locations significantly. Overall, the 6-implant configuration was a preferable configuration as it provided the most balanced mechanical performance in this patient-specific case.
Collapse
|
12
|
Park J, Lee D, Sutradhar A. Topology optimization of fixed complete denture framework. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3193. [PMID: 30815988 DOI: 10.1002/cnm.3193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
The functionality of a denture is directly related to the quality of life of the edentulous patients because treatment failure results in demoralizing consequences including difficulties in oral activities. Framework for fixed complete dentures plays a crucial role by transferring loads from the denture to the implants, which are integrated into the remaining bones and gingiva, thereby providing stability to the denture. Current techniques utilize 3D scan data of the implant site to capture the locations and soft tissue contours to design customized framework using computer-aided design (CAD) and computer-aided manufacturing (CAM) technology to properly support the denture teeth in their position. The performance and efficiency of these frameworks may be enhanced by incorporating a design optimization in the design process. We tested the feasibility of using the topology optimization to design patient-specific dental frameworks. The shapes of the optimized frameworks may be significantly different from the traditional designs, but better structural integrity is likely to be achieved with potentially less material. The numerical study reveals that commercially available dental framework would experience 16% less maximum stress when topology optimized even with a compliance minimization formulation with 50% volume fraction constraint. Topology optimization for designing dental frameworks might improve current clinical methods and provide better long-term patient satisfaction.
Collapse
Affiliation(s)
- Jaejong Park
- Department of Mechanical Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Damian Lee
- Division of Restorative Science and Prosthodontics, The Ohio State University, Columbus, Ohio
| | - Alok Sutradhar
- Department of Mechanical Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
13
|
Zhong J, Chen J, Weinkamer R, Darendeliler MA, Swain MV, Sue A, Zheng K, Li Q. In vivo effects of different orthodontic loading on root resorption and correlation with mechanobiological stimulus in periodontal ligament. J R Soc Interface 2019; 16:20190108. [PMID: 31039696 PMCID: PMC6544889 DOI: 10.1098/rsif.2019.0108] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/01/2019] [Indexed: 12/26/2022] Open
Abstract
Orthodontic root resorption is a common side effect of orthodontic therapy. It has been shown that high hydrostatic pressure in the periodontal ligament (PDL) generated by orthodontic forces will trigger recruitment of odontoclasts, leaving resorption craters on root surfaces. The patterns of resorption craters are the traces of odontoclast activity. This study aimed to investigate resorptive patterns by: (i) quantifying spatial root resorption under two different levels of in vivo orthodontic loadings using microCT imaging techniques and (ii) correlating the spatial distribution pattern of resorption craters with the induced mechanobiological stimulus field in PDL through nonlinear finite-element analysis (FEA) in silico. Results indicated that the heavy force led to a larger total resorption volume than the light force, mainly by presenting greater individual crater volumes ( p < 0.001) than increasing crater numbers, suggesting that increased mechano-stimulus predominantly boosted cellular resorption activity rather than recruiting more odontoclasts. Furthermore, buccal-cervical and lingual-apical regions in both groups were found to have significantly larger resorption volumes than other regions ( p < 0.005). These clinical observations are complemented by the FEA results, suggesting that root resorption was more likely to occur when the volume average compressive hydrostatic pressure exceeded the capillary blood pressure (4.7 kPa).
Collapse
Affiliation(s)
- Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia
| | - Junning Chen
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - M. Ali Darendeliler
- Faculty of Dentistry, Discipline of Orthodontics, University of Sydney, Sydney, Australia
| | - Michael V. Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia
- Faculty of Dentistry, Discipline of Orthodontics, University of Sydney, Sydney, Australia
| | - Andrian Sue
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia
| | - Keke Zheng
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Zhou X, Gan Y, Zhao Q, Xiong J, Xia Z. Simulation of orthodontic force of archwire applied to full dentition using virtual bracket displacement method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3189. [PMID: 30790479 DOI: 10.1002/cnm.3189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/31/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Orthodontic force simulation of tooth provides important guidance for clinical orthodontic treatment. However, previous studies did not involve the simulation of orthodontic force of archwire applied to full dentition. This study aimed to develop a method to simulate orthodontic force of tooth produced by loading a continuous archwire to full dentition using finite element method. METHOD A three-dimensional tooth-periodontal ligament-bone complex model of mandible was reconstructed from computed tomography images, and models of brackets and archwire were built. The simulation was completed through two steps. First, node displacements of archwire before and after loading were estimated through moving virtual brackets to drive archwire deformation. Second, the obtained node displacements were loaded to implement the loading of archwire, and orthodontic force was calculated. An orthodontic force tester (OFT) was used to measure orthodontic force in vitro for the validation. RESULTS After the simulation convergence, archwire was successfully loaded to brackets, and orthodontic force of teeth was obtained. Compared with the measured orthodontic force using the OFT, the absolute difference of the simulation results ranged from 0.5 to 22.7 cN for force component and ranged from 2.2 to 80.0 cN•mm for moment component, respectively. The relative difference of the simulation results ranged from 2.5% to 11.0% for force component, and ranged from 0.6% to 14.7% for moment component, respectively. CONCLUSIONS The developed orthodontic force simulation method based on virtual bracket displacement can be used to simulate orthodontic force provided by the archwire applied to full dentition.
Collapse
Affiliation(s)
- Xinwen Zhou
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yangzhou Gan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen, 518055, People's Republic of China
| | - Qunfei Zhao
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jing Xiong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zeyang Xia
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
15
|
Marginal adaptation of CAD-CAM onlays: Influence of preparation design and impression technique. J Prosthet Dent 2018; 120:396-402. [DOI: 10.1016/j.prosdent.2017.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/30/2022]
|
16
|
Chen Q, Zhang X, Zhu B. Topology optimization of fusiform muscles with a maximum contraction. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3096. [PMID: 29740982 DOI: 10.1002/cnm.3096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Understanding the optimal designs in nature is critical in bionics. This paper presents a method for designing the configuration of fusiform muscle with a maximum contractile displacement based on topology optimization methods. A nearly incompressible continuum constitutive model of skeletal muscle is utilized. The contractile displacement from the relaxed state to the contracted state is regarded as the objective function. To handle the numerical difficulties that result from the existence of element density, an energy interpolation equation is employed, and a modification of the constitutive model of skeletal muscle is proposed. Several numerical examples are given to demonstrate the reasonability of the proposed method.
Collapse
Affiliation(s)
- Qi Chen
- Guangdong Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xianmin Zhang
- Guangdong Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Benliang Zhu
- Guangdong Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| |
Collapse
|
17
|
Fracture behaviors of ceramic tissue scaffolds for load bearing applications. Sci Rep 2016; 6:28816. [PMID: 27403936 PMCID: PMC4941535 DOI: 10.1038/srep28816] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/08/2016] [Indexed: 11/21/2022] Open
Abstract
Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (μCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the μCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.
Collapse
|