Bruder L, Pelisek J, Eckstein HH, Gee MW. Biomechanical rupture risk assessment of abdominal aortic aneurysms using clinical data: A patient-specific, probabilistic framework and comparative case-control study.
PLoS One 2020;
15:e0242097. [PMID:
33211767 PMCID:
PMC7676745 DOI:
10.1371/journal.pone.0242097]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
We present a data-informed, highly personalized, probabilistic approach for the quantification of abdominal aortic aneurysm (AAA) rupture risk. Our novel framework builds upon a comprehensive database of tensile test results that were carried out on 305 AAA tissue samples from 139 patients, as well as corresponding non-invasively and clinically accessible patient-specific data. Based on this, a multivariate regression model is created to obtain a probabilistic description of personalized vessel wall properties associated with a prospective AAA patient. We formulate a probabilistic rupture risk index that consistently incorporates the available statistical information and generalizes existing approaches. For the efficient evaluation of this index, a flexible Kriging-based surrogate model with an active training process is proposed. In a case-control study, the methodology is applied on a total of 36 retrospective, diameter matched asymptomatic (group 1, n = 18) and known symptomatic/ruptured (group 2, n = 18) cohort of AAA patients. Finally, we show its efficacy to discriminate between the two groups and demonstrate competitive performance in comparison to existing deterministic and probabilistic biomechanical indices.
Collapse