1
|
Lee SB, Kim KW, Park SH, Baba Y, Lee C, Choi YH, Kim HH. Effects of size and shape of the side holes of a double J stent on the ureter fluid flow after stenosis. Comput Methods Biomech Biomed Engin 2024; 27:1596-1609. [PMID: 37647248 DOI: 10.1080/10255842.2023.2252550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
The effect of side holes morphology changes in double J stent (DJS) on encrustation was analyzed using computational fluid dynamics (CFD). We analyzed DJS side holes with inner diameter of 1 mm and outer diameters of 1 (type A), 1.2 (type B) and 1.4 (type C) mm, respectively. Concentric stenosis with three intraureteral degree (0%, 12%, and 88%) was analyzed. The flow rate, shear stress and wall shear stress (WSS) distribution were investigated. Urine flow through SH1 before the ureteropelvic junction (UPJ) differed based on the ureteral stenosis degree. The sum of flow rates through the SHs increased with diameter. In the stented ureter with 12% stenosis, the flow rate through SH1 approximately doubled than that without ureteral stenosis, and the flow rate through SH1 was maximal for the type 'C' stent in both 12% and 88% ureteral stenosis. The mean shear stress in the SHs increased with the degree of stenosis. The WSS around the SHs was higher for type 'C' than types A and B. From the flow rates and shear stresses in and around the SHs, the larger SH diameter of the DJS from the UPJ to mid-ureter is expected to induce encrustation reduction, especially in patients with urinary lithiasis.
Collapse
Affiliation(s)
- Seung Bae Lee
- Department of Urology, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| | - Kyung-Wuk Kim
- Department of Mechanical Engineering, Soongsil University, Seoul, Korea
| | - Se-Hyun Park
- Department of Mechanical Engineering, Graduate School of Engineering College of Convergence Technology, Gyeongsang National University, Jinju, Korea
| | - Yasutaka Baba
- Department of Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Changje Lee
- Research Institute of Maritime Industry, Korea Maritime and Ocean University, Busan, Korea
| | - Young Ho Choi
- Department of Radiology, Seoul National University Boramae Hospital, Seoul, Korea
| | - Hyoung-Ho Kim
- School of Mechanical Material Convergence Engineering, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
2
|
Abbasian S, Maddahian R. Numerical analysis of an obstacle motion in the human ureter using the dynamic mesh approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3800. [PMID: 38211948 DOI: 10.1002/cnm.3800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
Peristalsis is a common motion in various biological systems, especially the upper urinary tract, where it plays a pivotal role in conveying urine from the kidneys to the bladder. Using computational fluid dynamics, this study aims to investigate the effect of various peristaltic parameters on the motion of an obstacle through a two-dimensional ureter. Methodologically, Incompressible Navier-Stokes equations were utilized as the fluid domain's governing equations, and the Dynamic Mesh method (DM) was employed to simulate the peristaltic and obstacle motion. The peristaltic motion was modeled by a sinusoidal contraction wave propagating alongside the ureter at the physiological speed, and the motion of the obstruction through the ureter, which is caused by the fluid forces applied on its surface, was explored using the equation of Newton's second law. Various test cases of different shapes and sizes were supposed as kidney stones to understand the influence of the peristalsis properties on the stone removal process. The results show that the motion of the kidney stone is highly influenced by the gradient pressure force applied to its surface in the fluid domain. Moreover, investigating the effects of the peristaltic physical properties on the obstacle's motion indicates that the stone's motion is dependent on these parameters. Furthermore, this analysis provides insight into the peristaltic motion effects, assisting physicians in developing new medicines to facilitate the kidney stone removal process based on its shape and size.
Collapse
Affiliation(s)
- Saman Abbasian
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Reza Maddahian
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Comparing the effects of different amounts of fluid treatments in addition to analgesia in patients admitted to the emergency department with renal colic: A randomized study. MARMARA MEDICAL JOURNAL 2022. [DOI: 10.5472/marumj.1061180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Zheng S, Carugo D, Mosayyebi A, Turney B, Burkhard F, Lange D, Obrist D, Waters S, Clavica F. Fluid mechanical modeling of the upper urinary tract. WIREs Mech Dis 2021; 13:e1523. [PMID: 34730288 DOI: 10.1002/wsbm.1523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
The upper urinary tract (UUT) consists of kidneys and ureters, and is an integral part of the human urogenital system. Yet malfunctioning and complications of the UUT can happen at all stages of life, attributed to reasons such as congenital anomalies, urinary tract infections, urolithiasis and urothelial cancers, all of which require urological interventions and significantly compromise patients' quality of life. Therefore, many models have been developed to address the relevant scientific and clinical challenges of the UUT. Of all approaches, fluid mechanical modeling serves a pivotal role and various methods have been employed to develop physiologically meaningful models. In this article, we provide an overview on the historical evolution of fluid mechanical models of UUT that utilize theoretical, computational, and experimental approaches. Descriptions of the physiological functionality of each component are also given and the mechanical characterizations associated with the UUT are provided. As such, it is our aim to offer a brief summary of the current knowledge of the subject, and provide a comprehensive introduction for engineers, scientists, and clinicians who are interested in the field of fluid mechanical modeling of UUT. This article is categorized under: Cancer > Biomedical Engineering Infectious Diseases > Biomedical Engineering Reproductive System Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Shaokai Zheng
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Dario Carugo
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
| | - Ali Mosayyebi
- Bioengineering Sciences, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Ben Turney
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fiona Burkhard
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Sarah Waters
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, UK
| | - Francesco Clavica
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Sokolis DP. Alterations with age in the biomechanical behavior of human ureteral wall: Microstructure-based modeling. J Biomech 2020; 109:109940. [PMID: 32807335 DOI: 10.1016/j.jbiomech.2020.109940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/11/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023]
Abstract
The human ureters have not been thoroughly explored from the biomechanics perspective, despite the wealth of such data for other soft-tissue types. This study was motivated by the need to use relevant biomechanical data from human ureters and microstructure-based material formulations for simulations of ureteral peristalsis and stenting. Our starting choice was the four-fiber family model that has proven its validity as a descriptor of the multiaxial response of cardiovascular tissues. The degree of model complexity, required for rigorous fits to passive quasi-static pressure-diameter-force data at several axial stretches, was systematically investigated. Ureteral segments from sixteen human autopsy subjects were evaluated. A diagonal and axial family model allowed equally-good fits as the full model for all age groups and ureteral regions; considerably better than those allowed by the phenomenological Fung-type model whose root-mean-square error of fitting was three-fold greater. This reduced model mimicked the structure seen in histologic sections, namely plentiful diagonal collagen fibers in the lamina propria and axial fibers in the muscle and adventitia. The paucity of elastin fibers and mixed muscle orientation justified the use of isotropic muscle-dominated matrix with small neo-Hookean parameter values. The significantly thicker lamina propria in the lower than the upper ureter of young subjects (312 ± 27 vs. 232 ± 26 μm; mean ± standard error) corroborated the significant regional differences in diagonal-fiber family parameter values. The significant muscle thickening with age (upper ureter: 373 ± 48 vs. 527 ± 67 μm; middle: 388 ± 29 vs. 575 ± 69 μm; lower: 440 ± 21 vs. 602 ± 71 μm) corroborated the significant age-related increase in axial-fiber family parameter values.
Collapse
Affiliation(s)
- Dimitrios P Sokolis
- Laboratory of Biomechanics, Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
6
|
Kim KW, Kim HH, Choi YH, Lee SB, Baba Y. Urine flow analysis using double J stents of various sizes in in vitro ureter models. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3294. [PMID: 31981313 DOI: 10.1002/cnm.3294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
A double J stent (DJS) is used to alleviate the congestion of urine in the upper urinary tract when there is ureteral stenosis, which causes the interruption of normal urine flow and results in renal failure. The purpose of placing DJSs is to ensure sufficient urine flow in the ureter, but the DJS acts as a foreign body in the urinary system and sometimes acts as an obstacle in achieving sufficient urine flow. Here, to evaluate the performance of various sizes of DJSs, 5Fr (1.666 mm) to 8Fr (2.666 mm), in the ureter, silicon ureter models without stenosis, and a circulation setup were constructed. The total flow rates (TFRs) in the stented ureters were evaluated with an in vitro experiment. The TFRs in the 5Fr DJS were larger than those in the other sizes of DJS. As the size of DJS increased, the TFR decreased. Computational fluid dynamics was also applied to validate the experimental results. It was shown that the experimental results agreed well with the numerical results.
Collapse
Affiliation(s)
- Kyung-Wuk Kim
- Department of Mechanical Engineering, Soongsil University, Dongjak-gu, Seoul, South Korea
| | - Hyoung-Ho Kim
- Department of Mechanical Engineering, Gyeongnam National University of Science and Technology, Gyeongnam, South Korea
| | - Young Ho Choi
- Department of Radiology, Seoul National University Boramae Hospital, Dongjak-gu, Seoul, South Korea
| | - Seung Bae Lee
- Department of Urology, Seoul National University Boramae Hospital, Dongjak-gu, Seoul, South Korea
| | - Yasutaka Baba
- Department of Radiology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
7
|
Sokolis DP. In vitro study of age-related changes in human ureteral failure properties according to region, direction, and layer. Proc Inst Mech Eng H 2019; 233:570-583. [PMID: 30922180 DOI: 10.1177/0954411919839891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Knowledge of the capacity of the ureteral wall to withstand urodynamic or external stresses is essential to understand ureteral injury and rupture that mostly occur following trauma, but may also be secondary to obstructive uropathy. It has clinical significance as well in the prevention of iatrogenic injury, for example, during ureteroscopy, but no information is available with regard to the age-related failure properties and regional differences have not been systematically described. Uniaxial tensile testing was performed on 166 ureteral rings and strips from 21 humans free of overt urologic disease; histological evaluation was performed. The degree of layer participation to the intact wall failure stress (=tissue strength), peak elastic modulus (=stiffness), and failure stretch (=extensibility) was assessed by examining layer-specific ruptures in the stress-stretch data. Failure stress at and peak elastic modulus before the first (muscle/adventitial) rupture correlated inversely less with age ( p < 0.05 in few regions/directions) than failure stress at the second (mucosal) rupture ( p < 0.05 in the middle and lower ureter), consistent with the decreased mucosal thickness in ≥50-year-old subjects. Failure stretch at both ruptures did not correlate with age ( p > 0.05 in most regions/directions), paralleling elastin content. Correlations with age were more significant in females than males. Failure stress at the second rupture point was higher ( p < 0.05) distally in <50-year-old but not in ≥50-year-old subjects, justified by the increased collagen distally in the former. Directional differences in failure stretches ( p < 0.05 at all ages/regions/genders) were justified by preferentially axial collagen reinforcement. The presented results may establish the foundation for computational models of iatrogenic/accidental ureteral trauma.
Collapse
Affiliation(s)
- Dimitrios P Sokolis
- Laboratory of Biomechanics, Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
8
|
Takaddus AT, Chandy AJ. A two way fully coupled fluid structure simulation of human ureter peristalsis. Comput Methods Biomech Biomed Engin 2018; 21:750-759. [PMID: 30369259 DOI: 10.1080/10255842.2018.1516764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Numerical simulations of ureter peristalsis have been carried out in the past to understand both the flow field and ureter wall mechanics. The main objective of the current investigations is to have a better understanding of the urine transport due to the peristalsis in the ureter, thus making the information helpful for a better treatment and diagnosis of ureteral complications like urine reflux. In the current study, a numerical simulation is performed using a finite-element-based solver with a two-way fully coupled fluid structure interaction approach between the ureter wall and urine. For the first time, the ureter wall is modeled as an anisotropic hyper-elastic material based on experiments performed in previous literature on the human ureter. Peristalsis in the ureter is modeled as a series of isolated boluses. By observing the flow field it is clear that the peristalsis mechanism has a natural tendency to create a backflow as the isolated bolus moves forward. As a result, the urine can flow back from the bladder to the ureter at the ureterovesical (ureter-bladder) junctions, if the one-way valve starts to malfunction.
Collapse
Affiliation(s)
| | - Abhilash J Chandy
- b Department of Mechanical Engineering , Indian Institute of Technology Bombay , Mumbai , Maharashtra , India
| |
Collapse
|
9
|
Takaddus AT, Chandy AJ. A three-dimensional (3D) two-way coupled fluid-structure interaction (FSI) study of peristaltic flow in obstructed ureters. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3122. [PMID: 29939493 DOI: 10.1002/cnm.3122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
Obstruction in the ureter flow path is one of the most common problems in urinary-related diseases. As the ureter transports the urine using the expansion bolus created by the peristaltic pulses, an obstruction in its path can cause unwanted backflow and can also result in damage to the wall. But in order to understand this further, and specifically to quantify and parametrize the effect of the obstruction in the ureter, a detailed study investigating various level of obstructions in peristaltic ureter flow is necessary. In the current study, full 3D numerical simulations of peristalsis in an obstructed ureter are carried out using a finite element solver along with a two-way coupling between the fluid and structural domain with the arbitrary Eulerian-Lagrangian method. Analysis of the results shows that the larger the obstruction, the higher the wall shear stress and pressure gradient in the fluid. In addition, the amount of backflow increases with increase in the obstruction.
Collapse
Affiliation(s)
| | - Abhilash J Chandy
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|