1
|
Wang Y, Palzhanov Y, Dang DT, Quaini A, Olshanskii M, Majd S. On Fusogenicity of Positively Charged Phased-Separated Lipid Vesicles: Experiments and Computational Simulations. Biomolecules 2023; 13:1473. [PMID: 37892155 PMCID: PMC10605210 DOI: 10.3390/biom13101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This paper studies the fusogenicity of cationic liposomes in relation to their surface distribution of cationic lipids and utilizes membrane phase separation to control this surface distribution. It is found that concentrating the cationic lipids into small surface patches on liposomes, through phase-separation, can enhance liposome's fusogenicity. Further concentrating these lipids into smaller patches on the surface of liposomes led to an increased level of fusogenicity. These experimental findings are supported by numerical simulations using a mathematical model for phase-separated charged liposomes. Findings of this study may be used for design and development of highly fusogenic liposomes with minimal level of toxicity.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.W.)
| | - Yerbol Palzhanov
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.P.); (M.O.)
| | - Dang T. Dang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.W.)
| | - Annalisa Quaini
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.P.); (M.O.)
| | - Maxim Olshanskii
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.P.); (M.O.)
| | - Sheereen Majd
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.W.)
| |
Collapse
|
2
|
Duncan AL, Pezeshkian W. Mesoscale simulations: An indispensable approach to understand biomembranes. Biophys J 2023; 122:1883-1889. [PMID: 36809878 PMCID: PMC10257116 DOI: 10.1016/j.bpj.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Computer simulation techniques form a versatile tool, a computational microscope, for exploring biological processes. This tool has been particularly effective in exploring different features of biological membranes. In recent years, thanks to elegant multiscale simulation schemes, some fundamental limitations of investigations by distinct simulation techniques have been resolved. As a result, we are now capable of exploring processes spanning multiple scales beyond the capacity of any single technique. In this perspective, we argue that mesoscale simulations require more attention and must be further developed to fill evident gaps in a quest toward simulating and modeling living cell membranes.
Collapse
Affiliation(s)
- Anna L Duncan
- Department of Chemistry, Aarhus University, Aarhus C, Denmark.
| | - Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Tran PD, Blanpied TA, Atzberger PJ. Protein drift-diffusion dynamics and phase separation in curved cell membranes and dendritic spines: Hybrid discrete-continuum methods. Phys Rev E 2022; 106:044402. [PMID: 36397472 DOI: 10.1103/physreve.106.044402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
We develop methods for investigating protein drift-diffusion dynamics in heterogeneous cell membranes and the roles played by geometry, diffusion, chemical kinetics, and phase separation. Our hybrid stochastic numerical methods combine discrete particle descriptions with continuum-level models for tracking the individual protein drift-diffusion dynamics when coupled to continuum fields. We show how our approaches can be used to investigate phenomena motivated by protein kinetics within dendritic spines. The spine geometry is hypothesized to play an important biological role regulating synaptic strength, protein kinetics, and self-assembly of clusters. We perform simulation studies for model spine geometries varying the neck size to investigate how phase-separation and protein organization is influenced by different shapes. We also show how our methods can be used to study the roles of geometry in reaction-diffusion systems including Turing instabilities. Our methods provide general approaches for investigating protein kinetics and drift-diffusion dynamics within curved membrane structures.
Collapse
Affiliation(s)
- Patrick D Tran
- Physics, College of Creative Studies, University of California, Santa Barbara, Santa Barbara, California 93106-3080, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland, Baltimore, Maryland 21201, USA
| | - Paul J Atzberger
- Department of Mathematics and Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-3080, USA
| |
Collapse
|
4
|
Wang Y, Palzhanov Y, Quaini A, Olshanskii M, Majd S. Lipid domain coarsening and fluidity in multicomponent lipid vesicles: A continuum based model and its experimental validation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183898. [PMID: 35283081 DOI: 10.1016/j.bbamem.2022.183898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022]
Abstract
Liposomes that achieve a heterogeneous and spatially organized surface through phase separation have been recognized to be a promising platform for delivery purposes. However, their design and optimization through experimentation can be expensive and time-consuming. To assist with the design and reduce the associated cost, we propose a computational platform for modeling membrane coarsening dynamics based on the principles of continuum mechanics and thermodynamics. This model couples phase separation to lateral flow and accounts for different membrane fluidity within the different phases, which is known to affect the coarsening dynamics on lipid membranes. The simulation results are in agreement with the experimental data in terms of liquid ordered domains area fraction, total domains perimeter over time, and total number of domains over time for two different membrane compositions (DOPC:DPPC with a 1:1 M ratio with 15% Chol and DOPC:DPPC with a 1:2 M ratio with 25% Chol) that yield opposite and nearly inverse phase behavior. This quantitative validation shows that the developed platform can be a valuable tool in complementing experimental practice.
Collapse
Affiliation(s)
- Y Wang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - Y Palzhanov
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - A Quaini
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - M Olshanskii
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - S Majd
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| |
Collapse
|
5
|
Zhiliakov A, Wang Y, Quaini A, Olshanskii M, Majd S. Experimental validation of a phase-field model to predict coarsening dynamics of lipid domains in multicomponent membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183446. [PMID: 32828848 DOI: 10.1016/j.bbamem.2020.183446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Membrane phase-separation is a mechanism that biological membranes often use to locally concentrate specific lipid species in order to organize diverse membrane processes. Phase separation has also been explored as a tool for the design of liposomes with heterogeneous and spatially organized surfaces. These "patchy" liposomes are promising platforms for delivery purposes, however their design and optimization through experimentation can be expensive and time-consuming. We developed a computationally efficient method based on the surface Cahn-Hilliard phase-field model to complement experimental investigations in the design of patchy liposomes. The method relies on thermodynamic considerations to set the initial state for numerical simulations. We show that our computational approach delivers not only qualitative pictures, but also accurate quantitative information about the dynamics of the membrane organization. In particular, the computational and experimental results are in excellent agreement in terms of lipid domain area fraction, total lipid domain perimeter over time and total number of lipid domains over time for two different membrane compositions (DOPC:DPPC with a 2:1 M ratio with 20% Chol and DOPC:DPPC with a 3:1 M ratio with 20% Chol). Thus, the computational phase-field model informed by experiments has a considerable potential to assist in the design of liposomes with spatially organized surfaces, thereby containing the cost and time required by the design process.
Collapse
Affiliation(s)
- A Zhiliakov
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - Y Wang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - A Quaini
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - M Olshanskii
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - S Majd
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| |
Collapse
|