1
|
Wu M. Using the two optimization algorithms (BBO and FDA) coupling with radial basis neural network to estimate the compressive strength of high-ultra-performance concrete. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-221092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using Ultra-High Performance Concrete (UHPC) as the highly resistant material is widely advised in constructing sensitive structures to enhance safety. The utilization of eco-friendly contents such as fly-ash and silica-fume replacing cement can decrease the pollution rate in the production process of concrete and improve the compressive strength (CS) factor. There are many ways to appraise the CS of concretes as empirically and mathematically Artificial Neural Networks (ANN) as the high-accurate model is used in the present study. In this regard, Radial Basis Function (RBF) coupling with Biogeography-Based Optimization (BBO) and Flow Direction Algorithm (FDA) created the two high-accurate frameworks: BBO-RBF and FDA-RBF. Enhancing the accuracy of RBF to predict the CS and decreasing the ANN net complexity leads to having better results evaluated by various metrics. Therefore, using the proposed frameworks, the correlation index of R2 to model the CS in the training phase for FDA-RBF was calculated at 0.9, although BBO-RBF could get 0.85, with a 0.5% difference. However, the RMSE of FDA-RBF was 9 MPa, and for BBO-RBF, this index was calculated at 10 MPa the former model has about three percent more accuracy than the latter.
Collapse
Affiliation(s)
- Mengmeng Wu
- School of Civil Architecture and Environment, Hubei University of Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Wu P. Recent advances in the application of computational fluid dynamics in the development of rotary blood pumps. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
3
|
Huang F, Noël R, Berg P, Hosseini SA. Simulation of the FDA nozzle benchmark: A lattice Boltzmann study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106863. [PMID: 35617810 DOI: 10.1016/j.cmpb.2022.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Contrary to flows in small intracranial vessels, many blood flow configurations such as those found in aortic vessels and aneurysms involve larger Reynolds numbers and, therefore, transitional or turbulent conditions. Dealing with such systems require both robust and efficient numerical methods. METHODS We assess here the performance of a lattice Boltzmann solver with full Hermite expansion of the equilibrium and central Hermite moments collision operator at higher Reynolds numbers, especially for under-resolved simulations. To that end the food and drug administration's benchmark nozzle is considered at three different Reynolds numbers covering all regimes: (1) laminar at a Reynolds number of 500, (2) transitional at a Reynolds number of 3500, and (3) low-level turbulence at a Reynolds number of 6500. RESULTS The lattice Boltzmann results are compared with previously published inter-laboratory experimental data obtained by particle image velocimetry. Our results show good agreement with the experimental measurements throughout the nozzle, demonstrating the good performance of the solver even in under-resolved simulations. CONCLUSION In this manner, fast but sufficiently accurate numerical predictions can be achieved for flow configurations of practical interest regarding medical applications.
Collapse
Affiliation(s)
- Feng Huang
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", Magdeburg D-39106, Germany
| | - Romain Noël
- Univ. Gustave Eiffel, Inria, Cosys/SII, I4S, Bouguenais F-44344, France
| | - Philipp Berg
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", Magdeburg D-39106, Germany; Research Campus STIMULATE, University of Magdeburg "Otto von Guericke", Magdeburg, D-39106, Germany
| | - Seyed Ali Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", Magdeburg D-39106, Germany; Department of Mechanical and Process Engineering, ETH Zürich, Zürich 8092, Switzerland.
| |
Collapse
|
4
|
Qiao Y, Luo K, Fan J. Computational Prediction of Thrombosis in Food and Drug Administration's Benchmark Nozzle. Front Physiol 2022; 13:867613. [PMID: 35547578 PMCID: PMC9081348 DOI: 10.3389/fphys.2022.867613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombosis seriously threatens human cardiovascular health and the safe operation of medical devices. The Food and Drug Administration’s (FDA) benchmark nozzle model was designed to include the typical structure of medical devices. However, the thrombosis in the FDA nozzle has yet not been investigated. The objective of this study is to predict the thrombus formation process in the idealized medical device by coupling computational fluid dynamics and a macroscopic hemodynamic-based thrombus model. We developed the hemodynamic-based thrombus model by considering the effect of platelet consumption. The thrombus model was quantitatively validated by referring to the latest thrombosis experiment, which was performed in a backward-facing step with human blood flow. The same setup was applied in the FDA nozzle to simulate the thrombus formation process. The thrombus shaped like a ring was firstly observed in the FDA benchmark nozzle. Subsequently, the accuracy of the shear-stress transport turbulence model was confirmed in different turbulent flow conditions. Five scenarios with different Reynolds numbers were carried out. We found that turbulence could change the shape of centrosymmetric thrombus to axisymmetric and high Reynolds number blood flow would delay or even prevent thrombosis. Overall, the present study reports the thrombosis process in the FDA benchmark nozzle using the numerical simulation method, and the primary findings may shed light on the effect of turbulence on thrombosis.
Collapse
Affiliation(s)
- Yonghui Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.,Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.,Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China
| |
Collapse
|
5
|
Good BC. The effects of non-Newtonian blood modeling and pulsatility on hemodynamics in the food and drug administration's benchmark nozzle model. Biorheology 2021:BIR201019. [PMID: 34924367 DOI: 10.3233/bir-201019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Computational fluid dynamics (CFD) is an important tool for predicting cardiovascular device performance. The FDA developed a benchmark nozzle model in which experimental and CFD data were compared, however, the studies were limited by steady flows and Newtonian models. OBJECTIVE Newtonian and non-Newtonian blood models will be compared under steady and pulsatile flows to evaluate their influence on hemodynamics in the FDA nozzle. METHODS CFD simulations were validated against the FDA data for steady flow with a Newtonian model. Further simulations were performed using Newtonian and non-Newtonian models under both steady and pulsatile flows. RESULTS CFD results were within the experimental standard deviations at nearly all locations and Reynolds numbers. The model differences were most evident at Re = 500, in the recirculation regions, and during diastole. The non-Newtonian model predicted blunter upstream velocity profiles, higher velocities in the throat, and differences in the recirculation flow patterns. The non-Newtonian model also predicted a greater pressure drop at Re = 500 with minimal differences observed at higher Reynolds numbers. CONCLUSIONS An improved modeling framework and validation procedure were used to further investigate hemodynamics in geometries relevant to cardiovascular devices and found that accounting for blood's non-Newtonian and pulsatile behavior can lead to large differences in predictions in hemodynamic parameters.
Collapse
Affiliation(s)
- Bryan C Good
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
6
|
Torner B, Konnigk L, Abroug N, Wurm H. Turbulence and turbulent flow structures in a ventricular assist device-A numerical study using the large-eddy simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3431. [PMID: 33336869 DOI: 10.1002/cnm.3431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Numerical flow simulations that analyze the turbulent flow characteristics within a turbopump are important for optimizing the efficiency of such machines. In the case of ventricular assist devices (VADs), turbulent flow characteristics must be also examined in order to improve hemocompatibility. Turbulence increases the shear stresses in the VAD flow, which can lead to an increased damage to the transported blood components. Therefore, an understanding of the turbulent flow patterns and their significance for the numerical blood damage prediction is particularly important for flow optimizations in VADs in order to identify and thus minimize flow regions where blood could be damaged due to high turbulent stresses. Nevertheless, the turbulence occurring in VADs and the local turbulent structures that lead to increased turbulent stresses have not yet been analyzed in detail in these machines. Therefore, this study aims to investigate the turbulence in an axial VAD in a comprehensive and double tracked way. First, the flow in an axial VAD was computed using the large-eddy simulation method, and it was verified that the majority of the turbulence was directly resolved by the simulation. Then, the turbulent flow state of the VAD was quantified globally. For this purpose, a self-designed evaluation method, the power loss analysis, was used. Subsequently, local flow regions and flow structures were identified where significant turbulent stresses prevail. It will be shown that the identified regions are universal and will also occur in other axial blood pumps as well, for example, in the HeartMate II.
Collapse
Affiliation(s)
- Benjamin Torner
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Lucas Konnigk
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Nada Abroug
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Hendrik Wurm
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Flow Structures on a Planar Food and Drug Administration (FDA) Nozzle at Low and Intermediate Reynolds Number. FLUIDS 2020. [DOI: 10.3390/fluids6010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we present a general description of the flow structures inside a two-dimensional Food and Drug Administration (FDA) nozzle. To this aim, we have performed numerical simulations using the numerical code Nek5000. The topology patters of the solution obtained, identify four different flow regimes when the flow is steady, where the symmetry of the flow breaks down. An additional case has been studied at higher Reynolds number, when the flow is unsteady, finding a vortex street distributed along the expansion pipe of the geometry. Linear stability analysis identifies the evolution of two steady and two unsteady modes. The results obtained have been connected with the changes in the topology of the flow. Finally, higher-order dynamic mode decomposition has been applied to identify the main flow structures in the unsteady flow inside the FDA nozzle. The highest-amplitude dynamic mode decomposition (DMD) modes identified by the method model the vortex street in the expansion of the geometry.
Collapse
|
8
|
Manchester EL, Xu XY. The effect of turbulence on transitional flow in the FDA's benchmark nozzle model using large-eddy simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3389. [PMID: 32738822 DOI: 10.1002/cnm.3389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The Food and Drug Administration's (FDA) benchmark nozzle model has been studied extensively both experimentally and computationally. Although considerable efforts have been made on validations of a variety of numerical models against available experimental data, the transitional flow cases are still not fully resolved, especially with regards to detailed comparison of predicted turbulence quantities with experimental measurements. This study aims to fill this gap by conducting large-eddy simulations (LES) of flow through the FDA's benchmark model, at a transitional Reynolds number of 2000. Numerical results are compared to previous interlaboratory experimental results, with an emphasis on turbulence characteristics. Our results show that the LES methodology can accurately capture laminar quantities throughout the model. In the pre-jet breakdown region, predicted turbulence quantities are generally larger than high resolution experimental data acquired with laser Doppler velocimetry. In the jet breakdown regions, where maximum Reynolds stresses occur, Reynolds shear stresses show excellent agreement. Differences of up to 4% and 20% are observed near the jet core in the axial and radial normal Reynolds stresses, respectively. Comparisons between viscous and Reynolds shear stresses show that peak viscous shear stresses occur in the nozzle throat reaching a value of 18 Pa in the boundary layer, whilst peak Reynolds shear stresses occur in the jet breakdown region reaching a maximum value of 87 Pa. Our results highlight the importance in considering both laminar and turbulent contributions towards shear stresses and that neglecting the turbulence effect can significantly underestimate the total shear force exerted on the fluid.
Collapse
Affiliation(s)
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
9
|
Jain K. Efficacy of the FDA nozzle benchmark and the lattice Boltzmann method for the analysis of biomedical flows in transitional regime. Med Biol Eng Comput 2020; 58:1817-1830. [PMID: 32507933 PMCID: PMC7340647 DOI: 10.1007/s11517-020-02188-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022]
Abstract
Flows through medical devices as well as in anatomical vessels despite being at moderate Reynolds number may exhibit transitional or even turbulent character. In order to validate numerical methods and codes used for biomedical flow computations, the US Food and Drug Administration (FDA) established an experimental benchmark, which was a pipe with gradual contraction and sudden expansion representing a nozzle. The experimental results for various Reynolds numbers ranging from 500 to 6500 were publicly released. Previous and recent computational investigations of flow in the FDA nozzle found limitations in various CFD approaches and some even questioned the adequacy of the benchmark itself. This communication reports the results of a lattice Boltzmann method (LBM) – based direct numerical simulation (DNS) approach applied to the FDA nozzle benchmark for transitional cases of Reynolds numbers 2000 and 3500. The goal is to evaluate if a simple off the shelf LBM would predict the experimental results without the use of complex models or synthetic turbulence at the inflow. LBM computations with various spatial and temporal resolutions are performed—in the extremities of 45 million to 2.88 billion lattice cells—executed respectively on 32 CPU cores of a desktop to more than 300,000 cores of a modern supercomputer to explore and characterize miniscule flow details and quantify Kolmogorov scales. The LBM simulations transition to turbulence at a Reynolds number 2000 like the FDA’s experiments and acceptable agreement in jet breakdown locations, average velocity, shear stress, and pressure is found for both the Reynolds numbers. A bisecting plane showing the FDA nozzle and vorticity magnitude at t = 10 s for throat Reynolds numbers of 2000 and 3500 ![]()
Collapse
Affiliation(s)
- Kartik Jain
- Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands.
| |
Collapse
|