1
|
Simmonds MJ, Thamsen B, Olia SE, McNamee AP, Granegger M, Wurm H, Rajagopal K, McGiffin DC. Will blood-informed design signal the fourth generation of cardiac assist devices? J Heart Lung Transplant 2024; 43:1767-1770. [PMID: 39182799 DOI: 10.1016/j.healun.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Mechanical circulatory support devices have profoundly transformed the management of severe cardiothoracic disorders. While heart transplantation is the gold standard therapy for end-stage heart disease, long-term mechanical support devices are a viable alternative for those ineligible and/or those awaiting organ availability. Major technological advancements were made over first 5 decades of development, resulting in improved durability and survival with reduced adverse events. However, gains have tapered recently for various complications (e.g., internal bleeding, multisystem organ failure), which collectively represent a significant proportion of disability and/or mortality. Further, in light of mature ventricular assist devices failing during clinical trials or even after clinical approval (class I withdrawals), it is timely to consider: Are our preclinical assessment protocols vital in the design and development of mechanical circulatory support devices, providing a realistic and reliable profile of future clinical performance? This commentary explores this question and analyses development pathways through the lens of the various disciplines involved in the preclinical assessment of mechanical circulatory support technologies: Limitations in approaches to benchtop blood testing, computational design and simulation, and animal testing are discussed as likely contributors to some of the common hemocompatibility-related adverse events (HRAEs). While it is acknowledged that some shortcomings are pragmatic in nature, possible solutions are presented that will only be realized through truly transdisciplinary and open approaches that challenge the current nature of medical device development. We suggest that these can and must be overcome to diminish HRAEs and will potentially demarcate the fourth generation of cardiac assist devices.
Collapse
Affiliation(s)
- Michael J Simmonds
- Biorheology Research Laboratory, Griffith University, Gold Coast, Australia.
| | - Bente Thamsen
- Christian Doppler Laboratory for Mechanical Circulatory Support, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Salim E Olia
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Antony P McNamee
- Biorheology Research Laboratory, Griffith University, Gold Coast, Australia
| | - Marcus Granegger
- Christian Doppler Laboratory for Mechanical Circulatory Support, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Wurm
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Keshava Rajagopal
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David C McGiffin
- Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
2
|
Crone V, Hahne M, Knüppel F, Wurm FH, Torner B. Dynamic VAD simulations: Performing accurate simulations of ventricular assist devices in interaction with the cardiovascular system. Int J Artif Organs 2024; 47:624-632. [PMID: 39238170 DOI: 10.1177/03913988241268067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Medical advancements, particularly in ventricular assist devices (VADs), have notably advanced heart failure (HF) treatment, improving patient outcomes. However, challenges such as adverse events (strokes, bleeding and thrombosis) persist. Computational fluid dynamics (CFD) simulations are instrumental in understanding VAD flow dynamics and the associated flow-induced adverse events resulting from non-physiological flow conditions in the VAD.This study aims to validate critical CFD simulation parameters for accurate VAD simulations interacting with the cardiovascular system, building upon the groundwork laid by Hahne et al. A bidirectional coupling technique was used to model dynamic (pulsatile) flow conditions of the VAD CFD interacting with the cardiovascular system. Mesh size, time steps and simulation method (URANS, LES) were systematically varied to evaluate their impact on the dynamic pump performance (dynamic H - Q curve) of the HeartMate 3, aiming to find the optimal simulation configuration for accurately reproduce the dynamic H - Q curve. The new Overlapping Ratio (OR) method was developed and applied to quantify dynamic H - Q curves.In particular, mesh and time step sizes were found to have the greatest influence on the calculated pump performance. Therefore, small time steps and large mesh sizes are recommended to obtain accurate dynamic H - Q curves. On the other hand, the influence of the simulation method was not significant in this study. This study contributes to advancing VAD simulations, ultimately enhancing clinical efficacy and patient outcomes.
Collapse
Affiliation(s)
- Vincenz Crone
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Mario Hahne
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Finn Knüppel
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | | | - Benjamin Torner
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Lopez-Santana G, De Rosis A, Grant S, Venkateswaran R, Keshmiri A. Enhancing the implantation of mechanical circulatory support devices using computational simulations. Front Bioeng Biotechnol 2024; 12:1279268. [PMID: 38737533 PMCID: PMC11084291 DOI: 10.3389/fbioe.2024.1279268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction: Patients with end-stage heart failure (HF) may need mechanical circulatory support such as a left ventricular assist device (LVAD). However, there are a range of complications associated with LVAD including aortic regurgitation (AR) and thrombus formation. This study assesses whether the risk of developing aortic conditions can be minimised by optimising LVAD implantation technique. Methods: In this work, we evaluate the aortic flow patterns produced under different geometrical parameters for the anastomosis of the outflow graft (OG) to the aorta using computational fluid dynamics (CFD). A three-dimensional aortic model is created and the HeartMate III OG positioning is simulated by modifying (i) the distance from the anatomic ventriculo-arterial junction (AVJ) to the OG, (ii) the cardinal position around the aorta, and (iii) the angle between the aorta and the OG. The continuous LVAD flow and the remnant native cardiac cycle are used as inlet boundaries and the three-element Windkessel model is applied at the pressure outlets. Results: The analysis quantifies the impact of OG positioning on different haemodynamic parameters, including velocity, wall shear stress (WSS), pressure, vorticity and turbulent kinetic energy (TKE). We find that WSS on the aortic root (AoR) is around two times lower when the OG is attached to the coronal side of the aorta using an angle of 45° ± 10° at a distance of 55 mm. Discussion: The results show that the OG placement may significantly influence the haemodynamic patterns, demonstrating the potential application of CFD for optimising OG positioning to minimise the risk of cardiovascular complications after LVAD implantation.
Collapse
Affiliation(s)
- Gabriela Lopez-Santana
- School of Engineering, The University of Manchester, Manchester, United Kingdom
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Wythenshawe Hospital, Manchester, United Kingdom
| | - Alessandro De Rosis
- School of Engineering, The University of Manchester, Manchester, United Kingdom
| | - Stuart Grant
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Rajamiyer Venkateswaran
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Wythenshawe Hospital, Manchester, United Kingdom
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Amir Keshmiri
- School of Engineering, The University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
4
|
Knüppel F, Sun A, Wurm FH, Hussong J, Torner B. Effect of Particle Migration on the Stress Field in Microfluidic Flows of Blood Analog Fluids at High Reynolds Numbers. MICROMACHINES 2023; 14:1494. [PMID: 37630030 PMCID: PMC10456677 DOI: 10.3390/mi14081494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
In the present paper, we investigate how the reductions in shear stresses and pressure losses in microfluidic gaps are directly linked to the local characteristics of cell-free layers (CFLs) at channel Reynolds numbers relevant to ventricular assist device (VAD) applications. For this, detailed studies of local particle distributions of a particulate blood analog fluid are combined with wall shear stress and pressure loss measurements in two complementary set-ups with identical flow geometry, bulk Reynolds numbers and particle Reynolds numbers. For all investigated particle volume fractions of up to 5%, reductions in the stress and pressure loss were measured in comparison to a flow of an equivalent homogeneous fluid (without particles). We could explain this due to the formation of a CFL ranging from 10 to 20 μm. Variations in the channel Reynolds number between Re = 50 and 150 did not lead to measurable changes in CFL heights or stress reductions for all investigated particle volume fractions. These measurements were used to describe the complete chain of how CFL formation leads to a stress reduction, which reduces the apparent viscosity of the suspension and results in the Fåhræus-Lindqvist effect. This chain of causes was investigated for the first time for flows with high Reynolds numbers (Re∼100), representing a flow regime which can be found in the narrow gaps of a VAD.
Collapse
Affiliation(s)
- Finn Knüppel
- Institute of Turbomachinery, Faculty for Mechanical Engineering and Ship Design, University of Rostock, 18055 Rostock, Germany; (F.K.); (F.-H.W.)
| | - Ang Sun
- Institute for Fluid Mechanics and Aerodynamics, Technical University of Darmstadt, 64287 Darmstadt, Germany; (A.S.); (J.H.)
| | - Frank-Hendrik Wurm
- Institute of Turbomachinery, Faculty for Mechanical Engineering and Ship Design, University of Rostock, 18055 Rostock, Germany; (F.K.); (F.-H.W.)
| | - Jeanette Hussong
- Institute for Fluid Mechanics and Aerodynamics, Technical University of Darmstadt, 64287 Darmstadt, Germany; (A.S.); (J.H.)
| | - Benjamin Torner
- Institute of Turbomachinery, Faculty for Mechanical Engineering and Ship Design, University of Rostock, 18055 Rostock, Germany; (F.K.); (F.-H.W.)
| |
Collapse
|
5
|
Bornoff J, Najar A, Fresiello L, Finocchiaro T, Perkins IL, Gill H, Cookson AN, Fraser KH. Fluid-structure interaction modelling of a positive-displacement Total Artificial Heart. Sci Rep 2023; 13:5734. [PMID: 37059748 PMCID: PMC10104863 DOI: 10.1038/s41598-023-32141-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
For those suffering from end-stage biventricular heart failure, and where a heart transplantation is not a viable option, a Total Artificial Heart (TAH) can be used as a bridge to transplant device. The Realheart TAH is a four-chamber artificial heart that uses a positive-displacement pumping technique mimicking the native heart to produce pulsatile flow governed by a pair of bileaflet mechanical heart valves. The aim of this work was to create a method for simulating haemodynamics in positive-displacement blood pumps, using computational fluid dynamics with fluid-structure interaction to eliminate the need for pre-existing in vitro valve motion data, and then use it to investigate the performance of the Realheart TAH across a range of operating conditions. The device was simulated in Ansys Fluent for five cycles at pumping rates of 60, 80, 100 and 120 bpm and at stroke lengths of 19, 21, 23 and 25 mm. The moving components of the device were discretised using an overset meshing approach, a novel blended weak-strong coupling algorithm was used between fluid and structural solvers, and a custom variable time stepping scheme was used to maximise computational efficiency and accuracy. A two-element Windkessel model approximated a physiological pressure response at the outlet. The transient outflow volume flow rate and pressure results were compared against in vitro experiments using a hybrid cardiovascular simulator and showed good agreement, with maximum root mean square errors of 15% and 5% for the flow rates and pressures respectively. Ventricular washout was simulated and showed an increase as cardiac output increased, with a maximum value of 89% after four cycles at 120 bpm 25 mm. Shear stress distribution over time was also measured, showing that no more than [Formula: see text]% of the total volume exceeded 150 Pa at a cardiac output of 7 L/min. This study showed this model to be both accurate and robust across a wide range of operating points, and will enable fast and effective future studies to be undertaken on current and future generations of the Realheart TAH.
Collapse
Affiliation(s)
- Joseph Bornoff
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Azad Najar
- Scandinavian Real Heart AB, Västerås, Sweden
| | - Libera Fresiello
- Faculty of Science and Technology, University of Twente, Twente, The Netherlands
| | | | | | - Harinderjit Gill
- Department of Mechanical Engineering, University of Bath, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, UK
| | - Andrew N Cookson
- Department of Mechanical Engineering, University of Bath, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, UK
| | - Katharine H Fraser
- Department of Mechanical Engineering, University of Bath, Bath, UK.
- Centre for Therapeutic Innovation, University of Bath, Bath, UK.
| |
Collapse
|
6
|
Torner B, Frank D, Grundmann S, Wurm FH. Flow simulation-based particle swarm optimization for developing improved hemolysis models. Biomech Model Mechanobiol 2022; 22:401-416. [PMID: 36441414 PMCID: PMC10097800 DOI: 10.1007/s10237-022-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022]
Abstract
AbstractThe improvement and development of blood-contacting devices, such as mechanical circulatory support systems, is a life saving endeavor. These devices must be designed in such a way that they ensure the highest hemocompatibility. Therefore, in-silico trials (flow simulations) offer a quick and cost-effective way to analyze and optimize the hemocompatibility and performance of medical devices. In that regard, the prediction of blood trauma, such as hemolysis, is the key element to ensure the hemocompatibility of a device. But, despite decades of research related to numerical hemolysis models, their accuracy and reliability leaves much to be desired. This study proposes a novel optimization path, which is capable of improving existing models and aid in the development of future hemolysis models. First, flow simulations of three, turbulent blood flow test cases (capillary tube, FDA nozzle, FDA pump) were performed and hemolysis was numerically predicted by the widely-applied stress-based hemolysis models. Afterward, a multiple-objective particles swarm optimization (MOPSO) was performed to tie the physiological stresses of the simulated flow field to the measured hemolysis using an equivalent of over one million numerically determined hemolysis predictions. The results show that our optimization is capable of improving upon existing hemolysis models. However, it also unveils some deficiencies and limits of hemolysis prediction with stress-based models, which will need to be addressed in order to improve its reliability.
Collapse
|
7
|
Wu P. Recent advances in the application of computational fluid dynamics in the development of rotary blood pumps. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
8
|
Wu P, Huo JD, Zhang ZJ, Wang CJ. The influence of non-conformal grid interfaces on the results of large eddy simulation of centrifugal blood pumps. Artif Organs 2022; 46:1804-1816. [PMID: 35436356 DOI: 10.1111/aor.14263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Computational fluid dynamics has been widely used to assist the design and evaluation of blood pumps. Discretization errors associated with computational grid may influence the credibility of numerical simulations. Non-conformal grid interfaces commonly exist in rotary machines, including rotary blood pumps. Should grid size across the interface differ greatly, large errors may occur. METHODS This study explored the effects of non-conformal grid interface on the prediction of the flow field and hemolysis in blood pumps using large eddy simulation (LES). Two benchmarks, a nozzle model and a centrifugal blood pump were chosen as test cases. RESULTS This study found that non-conformal grid interfaces with considerable change of grid sizes led to discontinuities of flow variables and brought errors to metrics such as pressure head (7%) and hemolysis (up to 14%). CONCLUSIONS The results on the full unstructured grid are more accurate with negligible changes of flow variables across the non-conformal grid interface. A full unstructured grid should be employed for centrifugal blood pumps to minimize the influence of non-conformal grid interfaces for LES simulations.
Collapse
Affiliation(s)
- Peng Wu
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Jia-Dong Huo
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Zi-Jian Zhang
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Chun-Ju Wang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Huo JD, Wu P, Zhang L, Wu WT. Large eddy simulation as a fast and accurate engineering approach for the simulation of rotary blood pumps. Int J Artif Organs 2021; 44:887-899. [PMID: 34474617 DOI: 10.1177/03913988211041636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An accurate representation of the flow field in blood pumps is important for the design and optimization of blood pumps. The primary turbulence modeling methods applied to blood pumps have been the Reynolds-averaged Navier-Stokes (RANS) or URANS (unsteady RANS) method. Large eddy simulation (LES) method has been introduced to simulate blood pumps. Nonetheless, LES has not been widely used to assist in the design and optimization of blood pumps to date due to its formidable computational cost. The purpose of this study is to explore the potential of the LES technique as a fast and accurate engineering approach for the simulation of rotary blood pumps. The performance of "Light LES" (using the same time and spatial resolutions as the URANS) and LES in two rotary blood pumps was evaluated by comparing the results with the URANS and extensive experimental results. This study showed that the results of both "Light LES" and LES are superior to URANS, in terms of both performance curves and key flow features. URANS could not predict the flow separation and recirculation in diffusers for both pumps. In contrast, LES is superior to URANS in capturing these flows, performing well for both design and off-design conditions. The differences between the "Light LES" and LES results were relatively small. This study shows that with less computational cost than URANS, "Light LES" can be considered as a cost-effective engineering approach to assist in the design and optimization of rotary blood pumps.
Collapse
Affiliation(s)
- Jia-Dong Huo
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Peng Wu
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Liudi Zhang
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Wei-Tao Wu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|