1
|
Gu K, Tan Y, Li S, Chen S, Lin K, Tang Y, Zhu M. Sensory Nerve Regulation via H3K27 Demethylation Revealed in Akermanite Composite Microspheres Repairing Maxillofacial Bone Defect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400242. [PMID: 38874525 PMCID: PMC11321702 DOI: 10.1002/advs.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Maxillofacial bone defects exhibit intricate anatomy and irregular morphology, presenting challenges for effective treatment. This study aimed to address these challenges by developing an injectable bioactive composite microsphere, termed D-P-Ak (polydopamine-PLGA-akermanite), designed to fit within the defect site while minimizing injury. The D-P-Ak microspheres biodegraded gradually, releasing calcium, magnesium, and silicon ions, which, notably, not only directly stimulated the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) but also activated sensory nerve cells to secrete calcitonin gene-related peptide (CGRP), a key factor in bone repair. Moreover, the released CGRP enhanced the osteogenic differentiation of BMSCs through epigenetic methylation modification. Specifically, inhibition of EZH2 and enhancement of KDM6A reduced the trimethylation level of histone 3 at lysine 27 (H3K27), thereby activating the transcription of osteogenic genes such as Runx2 and Osx. The efficacy of the bioactive microspheres in bone repair is validated in a rat mandibular defect model, demonstrating that peripheral nerve response facilitates bone regeneration through epigenetic modification. These findings illuminated a novel strategy for constructing neuroactive osteo-inductive biomaterials with potential for further clinical applications.
Collapse
Affiliation(s)
- Kaijun Gu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Yu Tan
- Department of Orthodontics, Shanghai Stomatological Hospital and School of StomatologyFudan University Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan UniversityShanghai200001China
| | - Sitong Li
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Siyue Chen
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Kaili Lin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
- Department of OrthodonticsShanghai Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghai200011China
| | - Yanmei Tang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| | - Min Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio‐Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai200011China
| |
Collapse
|
2
|
Demirci S, Sahiner M, Suner SS, Sahiner N. Improved Biomedical Properties of Polydopamine-Coated Carbon Nanotubes. MICROMACHINES 2021; 12:1280. [PMID: 34832691 PMCID: PMC8623995 DOI: 10.3390/mi12111280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes (CNTs) due to their outstanding mechanical, thermal, chemical, and optical properties were utilized as a base material and were coated with polydopamine (PDA) (PDA@CNT) via the simple self-polymerization of dopamine (DA). Then, PDA@CNT coatings of up to five layers were examined for potential biomedical applications. The success of multiple coating of CNTs with PDA was confirmed via increased weight loss values with the increased number of PDA coatings of CNTs at 500 °C by thermogravimetric analysis. The surface area of bare CNTs was measured as 263.9 m2/g and decreased to 197.0 m2/g after a 5th coating with PDA. Furthermore, the antioxidant activities of CNT and PDA@CNTs were determined via total flavonoid content (TFC), total phenol content (TPC), and Fe(III)-reducing antioxidant power (FRAP) tests, revealing the increased antioxidant ability of PDA@CNTs with the increasing numbers of PDA coatings. Moreover, a higher inhibition percentage of the activity of the alpha-glucosidase enzyme with 95.1 ± 2.9% inhibition at 6 mg/mL PDA-1st@CNTs concentration was found. The CNT and PDA@CNTs exhibited blood compatibility, less than a 2.5% hemolysis ratio, and more than 85% blood clotting indexes. The minimum inhibition concentration (MIC) of PDA-5th@CNTs against E. coli and S. aureus bacteria was determined as 10 mg/mL.
Collapse
Affiliation(s)
- Sahin Demirci
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey; (S.D.); (S.S.S.)
- Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey
| | - Mehtap Sahiner
- Faculty of Canakkale School of Applied Science, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey;
| | - Selin Sagbas Suner
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey; (S.D.); (S.S.S.)
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey; (S.D.); (S.S.S.)
- Faculty of Canakkale School of Applied Science, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey;
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Tang Y, Tan Y, Lin K, Zhu M. Research Progress on Polydopamine Nanoparticles for Tissue Engineering. Front Chem 2021; 9:727123. [PMID: 34552912 PMCID: PMC8451720 DOI: 10.3389/fchem.2021.727123] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/18/2021] [Indexed: 01/20/2023] Open
Abstract
Tissue engineering is an interdisciplinary field that aims to develop biological substitutes for the replacement, repair, or enhancement of tissue function. The physical and chemical characteristics of biomaterials exert a profound influence on the biological responses and the following biofunction. Nanostructured coatings have been widely applied as an effective surface modification strategy to improve the bioactivity of biomaterials. Especially, polydopamine and polydopamine-derived nanoparticles are found with excessive adhesiveness, redox activity, photothermal conversion capacity, paramagnetism and conductivity other than excellent biocompatibility, and hydrophilicity. In this article, advances about polydopamine nanoparticles in tissue engineering applications are reviewed, including the repair of bone, cartilage, skin, heart, and nerve, to provide strategies for future biomaterial design.
Collapse
Affiliation(s)
- Yanmei Tang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yu Tan
- Second Dental Clinic, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Min Zhu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Liu XQ, Tang RZ. Biological responses to nanomaterials: understanding nano-bio effects on cell behaviors. Drug Deliv 2017; 24:1-15. [PMID: 29069934 PMCID: PMC8812585 DOI: 10.1080/10717544.2017.1375577] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Rui-Zhi Tang
- Lab of Inflammation & Cancer, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| |
Collapse
|
5
|
Jiang J, Huang Y, Wang Y, Xu H, Xing M, Zhong W. Mussel-Inspired Dopamine and Carbon Nanotube Leading to a Biocompatible Self-Rolling Conductive Hydrogel Film. MATERIALS 2017; 10:ma10080964. [PMID: 28820472 PMCID: PMC5578330 DOI: 10.3390/ma10080964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022]
Abstract
We report a novel self-rolling, conductive, and biocompatible multiwall carbon nanotube (MWCNT)-dopamine-polyethylene glycol (PEG) hydrogel film. The gel can self-fold into a thin tube when it is transferred from a glass slide to an aqueous environment, regardless of the concentrations of the MWCNT. The film presents a highly organized pattern, which results from the self-assembly of hydrophilic dopamine and hydrophobic carbon nanotubes. By exploring the biomedical potential, we found that MWCNT-included rolled film is nontoxic and can promote cell growth. For further functional verification by qPCR (quantitative polymerase chain reaction), bone marrow derived mesenchymal cells present higher levels of osteogenic differentiations in response to a higher concentration of CNTs. The results suggest that the self-rolling, conductive CNT-dopamine-PEG hydrogel could have multiple potentials, including biomedical usage and as a conductive biosensor.
Collapse
Affiliation(s)
- Junzi Jiang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Yong Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Yitian Wang
- Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Hui Xu
- Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Wen Zhong
- Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|