1
|
Zhang S, Yang B, Yang H, Zhao J, Zhang Y, Gao Y, Monteiro O, Zhang K, Liu B, Wang S. Potential rapid intraoperative cancer diagnosis using dynamic full-field optical coherence tomography and deep learning: A prospective cohort study in breast cancer patients. Sci Bull (Beijing) 2024; 69:1748-1756. [PMID: 38702279 DOI: 10.1016/j.scib.2024.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/06/2024]
Abstract
An intraoperative diagnosis is critical for precise cancer surgery. However, traditional intraoperative assessments based on hematoxylin and eosin (H&E) histology, such as frozen section, are time-, resource-, and labor-intensive, and involve specimen-consuming concerns. Here, we report a near-real-time automated cancer diagnosis workflow for breast cancer that combines dynamic full-field optical coherence tomography (D-FFOCT), a label-free optical imaging method, and deep learning for bedside tumor diagnosis during surgery. To classify the benign and malignant breast tissues, we conducted a prospective cohort trial. In the modeling group (n = 182), D-FFOCT images were captured from April 26 to June 20, 2018, encompassing 48 benign lesions, 114 invasive ductal carcinoma (IDC), 10 invasive lobular carcinoma, 4 ductal carcinoma in situ (DCIS), and 6 rare tumors. Deep learning model was built up and fine-tuned in 10,357 D-FFOCT patches. Subsequently, from June 22 to August 17, 2018, independent tests (n = 42) were conducted on 10 benign lesions, 29 IDC, 1 DCIS, and 2 rare tumors. The model yielded excellent performance, with an accuracy of 97.62%, sensitivity of 96.88% and specificity of 100%; only one IDC was misclassified. Meanwhile, the acquisition of the D-FFOCT images was non-destructive and did not require any tissue preparation or staining procedures. In the simulated intraoperative margin evaluation procedure, the time required for our novel workflow (approximately 3 min) was significantly shorter than that required for traditional procedures (approximately 30 min). These findings indicate that the combination of D-FFOCT and deep learning algorithms can streamline intraoperative cancer diagnosis independently of traditional pathology laboratory procedures.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/surgery
- Breast Neoplasms/pathology
- Tomography, Optical Coherence/methods
- Deep Learning
- Female
- Prospective Studies
- Middle Aged
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Ductal, Breast/pathology
- Aged
- Adult
- Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging
- Carcinoma, Intraductal, Noninfiltrating/surgery
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Intraoperative Period
Collapse
Affiliation(s)
- Shuwei Zhang
- Breast Center, Peking University People's Hospital, Beijing 100044, China
| | - Bin Yang
- China ESG Institute, Capital University of Economics and Business, Beijing 100070, China; Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Houpu Yang
- Breast Center, Peking University People's Hospital, Beijing 100044, China
| | - Jin Zhao
- Breast Center, Peking University People's Hospital, Beijing 100044, China
| | - Yuanyuan Zhang
- Department of Pathology, Peking University People's Hospital, Beijing 100044, China
| | - Yuanxu Gao
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Olivia Monteiro
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China; College of Future Technology, Peking University, Beijing 100091, China.
| | - Bo Liu
- School of Mathematical and Computational Sciences, Massey University, Auckland 0745, New Zealand.
| | - Shu Wang
- Breast Center, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
2
|
Richards-Kortum R, Lorenzoni C, Bagnato VS, Schmeler K. Optical imaging for screening and early cancer diagnosis in low-resource settings. NATURE REVIEWS BIOENGINEERING 2024; 2:25-43. [PMID: 39301200 PMCID: PMC11412616 DOI: 10.1038/s44222-023-00135-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 09/22/2024]
Abstract
Low-cost optical imaging technologies have the potential to reduce inequalities in healthcare by improving the detection of pre-cancer or early cancer and enabling more effective and less invasive treatment. In this Review, we summarise technologies for in vivo widefield, multi-spectral, endoscopic, and high-resolution optical imaging that could offer affordable approaches to improve cancer screening and early detection at the point-of-care. Additionally, we discuss approaches to slide-free microscopy, including confocal imaging, lightsheet microscopy, and phase modulation techniques that can reduce the infrastructure and expertise needed for definitive cancer diagnosis. We also evaluate how machine learning-based algorithms can improve the accuracy and accessibility of optical imaging systems and provide real-time image analysis. To achieve the potential of optical technologies, developers must ensure that devices are easy to use; the optical technologies must be evaluated in multi-institutional, prospective clinical tests in the intended setting; and the barriers to commercial scale-up in under-resourced markets must be overcome. Therefore, test developers should view the production of simple and effective diagnostic tools that are accessible and affordable for all countries and settings as a central goal of their profession.
Collapse
Affiliation(s)
- Rebecca Richards-Kortum
- Department of Bioengineering, Rice University, Houston, TX, USA
- Institute for Global Health Technologies, Rice University, Houston, TX, USA
| | - Cesaltina Lorenzoni
- National Cancer Control Program, Ministry of Health, Maputo, Mozambique
- Department of Pathology, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
- Maputo Central Hospital, Maputo, Mozambique
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kathleen Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Sortino R, Cunquero M, Castro-Olvera G, Gelabert R, Moreno M, Riefolo F, Matera C, Fernàndez-Castillo N, Agnetta L, Decker M, Lluch JM, Hernando J, Loza-Alvarez P, Gorostiza P. Three-Photon Infrared Stimulation of Endogenous Neuroreceptors in Vivo. Angew Chem Int Ed Engl 2023; 62:e202311181. [PMID: 37823736 DOI: 10.1002/anie.202311181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
To interrogate neural circuits and crack their codes, in vivo brain activity imaging must be combined with spatiotemporally precise stimulation in three dimensions using genetic or pharmacological specificity. This challenge requires deep penetration and focusing as provided by infrared light and multiphoton excitation, and has promoted two-photon photopharmacology and optogenetics. However, three-photon brain stimulation in vivo remains to be demonstrated. We report the regulation of neuronal activity in zebrafish larvae by three-photon excitation of a photoswitchable muscarinic agonist at 50 pM, a billion-fold lower concentration than used for uncaging, and with mid-infrared light of 1560 nm, the longest reported photoswitch wavelength. Robust, physiologically relevant photoresponses allow modulating brain activity in wild-type animals with spatiotemporal and pharmacological precision. Computational calculations predict that azobenzene-based ligands have high three-photon absorption cross-section and can be used directly with pulsed infrared light. The expansion of three-photon pharmacology will deeply impact basic neurobiology and neuromodulation phototherapies.
Collapse
Affiliation(s)
- Rosalba Sortino
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
| | - Marina Cunquero
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Gustavo Castro-Olvera
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Ricard Gelabert
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Miquel Moreno
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Current address: Teamit Institute, Partnerships, Barcelona Health Hub, 08025, Barcelona, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Current address: Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Noèlia Fernàndez-Castillo
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Biomedicina de la, Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950, Esplugues de Llobregat, Spain
| | - Luca Agnetta
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Ludwig Maximilian University of Würzburg, 97074, Würzburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Ludwig Maximilian University of Würzburg, 97074, Würzburg, Germany
| | - José M Lluch
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), UAB, 08193, Bellaterra, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- CIBER-BBN, ISCIII, 28029, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
4
|
Stanciu SG, König K, Song YM, Wolf L, Charitidis CA, Bianchini P, Goetz M. Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning. BIOPHYSICS REVIEWS 2023; 4:021307. [PMID: 38510341 PMCID: PMC10903409 DOI: 10.1063/5.0133027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 03/22/2024]
Abstract
According to the World Health Organization, the proportion of the world's population over 60 years will approximately double by 2050. This progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustainability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease, or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diagnostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endoscopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, Bucharest, Romania
| | | | | | - Lior Wolf
- School of Computer Science, Tel Aviv University, Tel-Aviv, Israel
| | - Costas A. Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Italian Institute of Technology, Genoa, Italy
| | - Martin Goetz
- Medizinische Klinik IV-Gastroenterologie/Onkologie, Kliniken Böblingen, Klinikverbund Südwest, Böblingen, Germany
| |
Collapse
|
5
|
Sturgess V, Azubuike UF, Tanner K. Vascular regulation of disseminated tumor cells during metastatic spread. BIOPHYSICS REVIEWS 2023; 4:011310. [PMID: 38510161 PMCID: PMC10903479 DOI: 10.1063/5.0106675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2024]
Abstract
Cancer cells can travel to other organs via interconnected vascular systems to form new lesions in a process known as metastatic spread. Unfortunately, metastasis remains the leading cause of patient lethality. In recent years, it has been demonstrated that physical cues are just as important as chemical and genetic perturbations in driving changes in gene expression, cell motility, and survival. In this concise review, we focus on the physical cues that cancer cells experience as they migrate through the lymphatic and blood vascular networks. We also present an overview of steps that may facilitate organ specific metastasis.
Collapse
Affiliation(s)
- Victoria Sturgess
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| | - Udochi F. Azubuike
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda MD 20892, USA
| |
Collapse
|
6
|
Abstract
In this series of papers on light microscopy imaging, we have covered the fundamentals of microscopy, super-resolution microscopy, and lightsheet microscopy. This last review covers multi-photon microscopy with a brief reference to intravital imaging and Brainbow labeling. Multi-photon microscopy is often referred to as two-photon microscopy. Indeed, using two-photon microscopy is by far the most common way of imaging thick tissues; however, it is theoretically possible to use a higher number of photons, and three-photon microscopy is possible. Therefore, this review is titled "multi-photon microscopy." Another term for describing multi-photon microscopy is "non-linear" microscopy because fluorescence intensity at the focal spot depends upon the average squared intensity rather than the squared average intensity; hence, non-linear optics (NLO) is an alternative name for multi-photon microscopy. It is this non-linear relationship (or third exponential power in the case of three-photon excitation) that determines the axial optical sectioning capability of multi-photon imaging. In this paper, the necessity for two-photon or multi-photon imaging is explained, and the method of optical sectioning by multi-photon microscopy is described. Advice is also given on what fluorescent markers to use and other practical aspects of imaging thick tissues. The technique of Brainbow imaging is discussed. The review concludes with a description of intravital imaging of the mouse. © 2023 Wiley Periodicals LLC.
Collapse
|
7
|
Bouchalova P, Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int 2022; 22:394. [PMID: 36494720 PMCID: PMC9733110 DOI: 10.1186/s12935-022-02801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.
Collapse
Affiliation(s)
- Pavla Bouchalova
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Bouchal
- grid.10267.320000 0001 2194 0956Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
8
|
Chang SY, Chang JC, Yang CJ, Haung SW, Chang CY. Real-time adaptive ultrashort pulse compressor for dynamic group delay dispersion compensation. OPTICS EXPRESS 2022; 30:26492-26503. [PMID: 36236840 DOI: 10.1364/oe.464353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
The optical dispersion effect in ultrafast pulse laser systems broadens the laser pulse duration and reduces the theoretical peak power. The present study proposes an adaptive ultrashort pulse compressor for compensating the optical dispersion using a direct optical-dispersion estimation by spectrogram (DOES) method. The DOES has fast and accurate computation time which is suitable for real time controller design. In the proposed approach, the group delay dispersion (GDD) and its polarity are estimated directly from the delay marginal of the trace obtained from a single-shot frequency-resolved optical gating (FROG). The estimated GDD is then processed by a closed-loop controller, which generates a command signal to drive a linear deformable mirror as required to achieve the desired laser pulse compression. The dispersion analysis, control computation, and deformable mirror control processes are implemented on a single field programmable gate array (FPGA). It is shown that the DOES dispersion computation process requires just 0.5 ms to complete. Moreover, the proposed pulse compressor compensates for both static dispersion and dynamic dispersion within five time steps when closed-loop controller is performed at a frequency of 100 Hz. The experimental results show that the proposed pulse compressor yields an effective fluorescence intensity improvement in a multiphoton excited fluorescence microscope (MPEFM).
Collapse
|
9
|
Tank A, Vergato C, Waxman DJ, Roblyer D. Spatial frequency domain imaging for monitoring immune-mediated chemotherapy treatment response and resistance in a murine breast cancer model. Sci Rep 2022; 12:5864. [PMID: 35393476 PMCID: PMC8989878 DOI: 10.1038/s41598-022-09671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Spatial Frequency Domain Imaging (SFDI) can provide longitudinal, label-free, and widefield hemodynamic and scattering measurements of murine tumors in vivo. Our previous work has shown that the reduced scattering coefficient (μ's) at 800 nm, as well as the wavelength dependence of scattering, both have prognostic value in tracking apoptosis and proliferation during treatment with anti-cancer therapies. However, there is limited work in validating these optical biomarkers in clinically relevant tumor models that manifest specific treatment resistance mechanisms that mimic the clinical setting. It was recently demonstrated that metronomic dosing of cyclophosphamide induces a strong anti-tumor immune response and tumor volume reduction in the E0771 murine breast cancer model. This immune activation mechanism can be blocked with an IFNAR-1 antibody, leading to treatment resistance. Here we present a longitudinal study utilizing SFDI to monitor this paired responsive-resistant model for up to 30 days of drug treatment. Mice receiving the immune modulatory metronomic cyclophosphamide schedule had a significant increase in tumor optical scattering compared to mice receiving cyclophosphamide in combination with the IFNAR-1 antibody (9% increase vs 10% decrease on day 5 of treatment, p < 0.001). The magnitude of these differences increased throughout the duration of treatment. Additionally, scattering changes on day 4 of treatment could discriminate responsive versus resistant tumors with an accuracy of 78%, while tumor volume had an accuracy of only 52%. These results validate optical scattering as a promising prognostic biomarker that can discriminate between treatment responsive and resistant tumor models.
Collapse
Affiliation(s)
- Anup Tank
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cameron Vergato
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Darren Roblyer
- Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Carabaña C, Lloyd-Lewis B. Multidimensional Fluorescence Imaging of Embryonic and Postnatal Mammary Gland Development. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2471:19-48. [PMID: 35175590 DOI: 10.1007/978-1-0716-2193-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multidimensional fluorescence imaging represents a powerful approach for studying the dynamic cellular processes underpinning the development, function, and maintenance of the mammary gland. Here, we describe key multidimensional imaging strategies that enable visualization of mammary branching morphogenesis and epithelial cell fate dynamics during postnatal and embryonic mammary gland development. These include 4-dimensional intravital microscopy and ex vivo imaging of embryonic mammary cultures, in addition to methods that facilitate 3-dimensional imaging of the ductal epithelium at single-cell resolution within its native stroma. Collectively, these approaches provide a window into mammary developmental dynamics, and the perturbations underlying tissue dysfunction and disease.
Collapse
Affiliation(s)
- Claudia Carabaña
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France.,Sorbonne University, UPMC University of Paris VI, Paris, France
| | - Bethan Lloyd-Lewis
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
11
|
Titze U, Sievert KD, Titze B, Schulz B, Schlieker H, Madarasz Z, Weise C, Hansen T. Ex Vivo Fluorescence Confocal Microscopy in Specimens of the Liver: A Proof-of-Concept Study. Cancers (Basel) 2022; 14:590. [PMID: 35158859 PMCID: PMC8833349 DOI: 10.3390/cancers14030590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Ex vivo Fluorescence Confocal Microscopy (FCM) is a technique providing high-resolution images of native tissues. The method is increasingly used in surgical settings in areas of dermatology and urology. Only a few publications exist about examinations of tumors and non-neoplastic lesions of the liver. We report on the application of FCM in biopsies, surgical specimens and autopsy material (33 patients, 39 specimens) of the liver and compare the results to conventional histology. Our preliminary examinations indicated a perfect suitability for tumor diagnosis (ĸ = 1.00) and moderate/good suitability for the assessment of inflammation (ĸ = 0.4-0.6) with regard to their severity and localization. Macro-vesicular steatosis was reliably detected, micro-vesicular steatosis tended to be underestimated. Cholestasis and eosinophilic granules in granulocytes were not represented in the scans. The tissue was preserved as native material and maintained its quality for downstream histological, immunohistological and molecular examinations. In summary, FCM is a material sparing method that provides rapid feedback to the clinician about the presence of tumor, the degree of inflammation and structural changes. This can lead to faster therapeutic decisions in the management of liver tumors, treatment of hepatitis or in liver transplant medicine.
Collapse
Affiliation(s)
- Ulf Titze
- Institute of Pathology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany; (B.T.); (B.S.); (T.H.)
| | - Karl-Dietrich Sievert
- Department of Urology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany;
| | - Barbara Titze
- Institute of Pathology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany; (B.T.); (B.S.); (T.H.)
| | - Birte Schulz
- Institute of Pathology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany; (B.T.); (B.S.); (T.H.)
| | - Heiko Schlieker
- Department of Gastroenterology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany;
| | - Zsolt Madarasz
- Department of General Surgery, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany;
| | - Christian Weise
- Department of Pediatrics, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany;
| | - Torsten Hansen
- Institute of Pathology, Campus Lippe, University Hospital OWL of the University of Bielefeld, 32756 Detmold, Germany; (B.T.); (B.S.); (T.H.)
| |
Collapse
|
12
|
Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: Actionable insights for membrane-based therapy and diagnoses. Med Res Rev 2021; 42:983-1018. [PMID: 34719798 DOI: 10.1002/med.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/18/2021] [Accepted: 10/24/2021] [Indexed: 01/17/2023]
Abstract
Cancer cells display altered cellular lipid metabolism, including disruption in endogenous lipid synthesis, storage, and exogenous uptake for membrane biogenesis and functions. Altered lipid metabolism and, consequently, lipid composition impacts cellular function by affecting membrane structure and properties, such as fluidity, rigidity, membrane dynamics, and lateral organization. Herein, we provide an overview of lipid membranes and how their properties affect cellular functions. We also detail how the rewiring of lipid metabolism impacts the lipidomic landscape of cancer cell membranes and influences the characteristics of cancer cells. Furthermore, we discuss how the altered cancer lipidome provides cues for developing lipid-inspired innovative therapeutic and diagnostic strategies while improving our limited understanding of the role of lipids in cancer initiation and progression. We also present the arcade of membrane characterization techniques to cement their relevance in cancer diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Prema K Agarwala
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.,Depertment of Biofunctional Science and Technology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Ghanim M, Relitti N, McManus G, Butini S, Cappelli A, Campiani G, Mok KH, Kelly VP. A non-toxic, reversibly released imaging probe for oral cancer that is derived from natural compounds. Sci Rep 2021; 11:14069. [PMID: 34234213 PMCID: PMC8263592 DOI: 10.1038/s41598-021-93408-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
CD44 is emerging as an important receptor biomarker for various cancers. Amongst these is oral cancer, where surgical resection remains an essential mode of treatment. Unfortunately, surgery is frequently associated with permanent disfigurement, malnutrition, and functional comorbidities due to the difficultly of tumour removal. Optical imaging agents that can guide tumour tissue identification represent an attractive approach to minimising the impact of surgery. Here, we report the synthesis of a water-soluble fluorescent probe, namely HA-FA-HEG-OE (compound 1), that comprises components originating from natural sources: oleic acid, ferulic acid and hyaluronic acid. Compound 1 was found to be non-toxic, displayed aggregation induced emission and accumulated intracellularly in vesicles in SCC-9 oral squamous cells. The uptake of 1 was fully reversible over time. Internalization of compound 1 occurs through receptor mediated endocytosis; uniquely mediated through the CD44 receptor. Uptake is related to tumorigenic potential, with non-tumorigenic, dysplastic DOK cells and poorly tumorigenic MCF-7 cells showing only low intracellular levels and highlighting the critical role of endocytosis in cancer progression and metastasis. Together, the recognised importance of CD44 as a cancer stem cell marker in oral cancer, and the reversible, non-toxic nature of 1, makes it a promising agent for real time intraoperative imaging.
Collapse
Affiliation(s)
- Magda Ghanim
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, 53100, Siena, Italy
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, 53100, Siena, Italy.
| | - Andrea Cappelli
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, 53100, Siena, Italy
| | - K H Mok
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
14
|
Loveless R, Shay C, Teng Y. Unveiling Tumor Microenvironment Interactions Using Zebrafish Models. Front Mol Biosci 2021; 7:611847. [PMID: 33521055 PMCID: PMC7841114 DOI: 10.3389/fmolb.2020.611847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment (TME) is a rich and active arena that is strategically evolved overtime by tumors to promote their survival and dissemination. Over the years, attention has been focused to characterize and identify the tumor-supporting roles and subsequent targeting potentials of TME components. Nevertheless, recapitulating the human TME has proved inherently challenging, leaving much to be explored. In this regard, in vivo model systems like zebrafish, with its optical clarity, ease of genetic manipulation, and high engraftment, have proven to be indispensable for TME modeling and investigation. In this review, we discuss the recent ways by which zebrafish models have lent their utility to provide new insights into the various cellular and molecular mechanisms driving TME dynamics and tumor support. Specifically, we report on innate immune cell interactions, cytokine signaling, metastatic plasticity, and other processes within the metastatic cascade. In addition, we reflect on the arrival of adult zebrafish models and the potential of patient-derived xenografts.
Collapse
Affiliation(s)
- Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Chloe Shay
- Department of Pediatrics, Emory Children's Center, Emory University, Atlanta, GA, United States
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, United States
| |
Collapse
|
15
|
Intravital Optical Imaging to Monitor Anti-Tumor Immunological Response in Preclinical Models. Bioanalysis 2021. [DOI: 10.1007/978-3-030-78338-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Smolanka II, Bagmut IY, Sheremet MI, Lyashenko AO, Movchan OV, Smolanka II, Loboda AD, Kolisnyk IL, Sydorchuk LP, Lazaruk OV. Delayed breast reconstruction with tram-flap and various modifications after radical mastectomy. J Med Life 2021; 14:847-852. [PMID: 35126757 PMCID: PMC8811661 DOI: 10.25122/jml-2021-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
This study describes the experience of radical mastectomies with simultaneous breast reconstruction using TRAM flap in patients with inflammatory breast cancer. The study aimed to evaluate the effectiveness of primary breast reconstruction using the TRAM-flap procedure in patients with an inflammatory form of breast cancer. Our work is associated with some deviation from generally accepted standards: delayed breast reconstruction after radical mastectomy for inflammatory breast cancer. We describe the experience of radical mastectomies with the simultaneous reconstruction of the breast using a TRAM flap in patients with inflammatory breast cancer. This study included 12 patients diagnosed with breast cancer stages IIIB and IIIC. Almost all patients (eleven out of twelve patients) underwent radical mastectomy with one-stage reconstruction using a TRAM flap after chemotherapy. Two years later, one patient (8.3%) showed disease progression in the form of distant metastases in the bones of the spine. One patient (8.3%) had a regional relapse in the displaced flap near the postoperative scar. The rest of the patients (83.4%) showed no signs of continuing the disease. Patients with one-stage breast reconstruction improved socially, and their subjective well-being was better than those who underwent radical mastectomy without reconstruction. Experience in performing one-stage reconstructions in the surgical treatment of patients with inflammatory breast cancer is a reason for restrained optimism regarding the possibility and feasibility of these operations.
Collapse
Affiliation(s)
| | | | - Michael Ivanovicha Sheremet
- Surgery Department No.1, Bukovinian State Medical University, Chernivtsi, Ukraine,* Corresponding Author: Michael Ivanovich Sheremet, Surgery Department No. 1 of Bukovinian State Medical University, Holovna str., 191, 58018, Chernivtsi, Ukraine. Phone: 0956064607; E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tahir Jamal M, Hansen AK, Tawfieq M, Andersen PE, Jensen OB. Influence of pump beam shaping and noise on performance of a direct diode-pumped ultrafast Ti:sapphire laser. OPTICS EXPRESS 2020; 28:31754-31762. [PMID: 33115141 DOI: 10.1364/oe.404968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
One of the major factors that limits the widespread use of ultrafast titanium sapphire (Ti:S) lasers in life science is its expensive and complex pump source. Broad area diode laser (BA-DL) based pump sources have high potential to solve this problem, since they are compact, inexpensive and very efficient. However, their non-diffraction limited beam profile makes it challenging to achieve high powers in Kerr-lens mode-locked (KLM) operation of Ti:S lasers. In this work, we show that the ideal way to beam shape two spectrally combined BA-DLs with different beam qualities is to aim for a compromise between matching to the cavity mode diameter and the cavity mode Rayleigh range. We furthermore conclude that the relative intensity noise (RIN) of the BA-DL pumped Ti:S laser, another important parameter for imaging applications, is sufficiently low for a wide range of life science applications. However, for applications that are highly sensitive to noise, new laser diode designs are likely necessary to reduce inherent noise originating within the laser diode.
Collapse
|
18
|
Lloyd-Lewis B. Multidimensional Imaging of Mammary Gland Development: A Window Into Breast Form and Function. Front Cell Dev Biol 2020; 8:203. [PMID: 32296702 PMCID: PMC7138012 DOI: 10.3389/fcell.2020.00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
An in-depth appreciation of organ form and function relies on the ability to image intact tissues across multiple scales. Difficulties associated with imaging deep within organs, however, can preclude high-resolution multidimensional imaging of live and fixed tissues. This is particularly challenging in the mammary gland, where the epithelium lies deeply encased within a stromal matrix. Recent advances in deep-tissue and live imaging methodologies are increasingly facilitating the visualization of complex cellular structures within their native environment. Alongside, refinements in optical tissue clearing and immunostaining methods are enabling 3D fluorescence imaging of whole organs at unprecedented resolutions. Collectively, these methods are illuminating the dynamic biological processes underlying tissue morphogenesis, homeostasis, and disease. This review provides a snapshot of the current and state-of-the-art multidimensional imaging techniques applied to the postnatal mammary gland, illustrating how these approaches have revealed important new insights into mammary gland ductal development and lactation. Continual evolution of multidimensional image acquisition and analysis methods will undoubtedly offer further insights into mammary gland biology that promises to shed new light on the perturbations leading to breast cancer.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
19
|
Perrin L, Bayarmagnai B, Gligorijevic B. Frontiers in Intravital Multiphoton Microscopy of Cancer. Cancer Rep (Hoboken) 2020; 3:e1192. [PMID: 32368722 PMCID: PMC7197974 DOI: 10.1002/cnr2.1192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background Cancer is a highly complex disease which involves the co-operation of tumor cells with multiple types of host cells and the extracellular matrix. Cancer studies which rely solely on static measurements of individual cell types are insufficient to dissect this complexity. In the last two decades, intravital microscopy has established itself as a powerful technique that can significantly improve our understanding of cancer by revealing the dynamic interactions governing cancer initiation, progression and treatment effects, in living animals. This review focuses on intravital multiphoton microscopy (IV-MPM) applications in mouse models of cancer. Recent Findings IV-MPM studies have already enabled a deeper understanding of the complex events occurring in cancer, at the molecular, cellular and tissue levels. Multiple cells types, present in different tissues, influence cancer cell behavior via activation of distinct signaling pathways. As a result, the boundaries in the field of IV-MPM are continuously being pushed to provide an integrated comprehension of cancer. We propose that optics, informatics and cancer (cell) biology are co-evolving as a new field. We have identified four emerging themes in this new field. First, new microscopy systems and image processing algorithms are enabling the simultaneous identification of multiple interactions between the tumor cells and the components of the tumor microenvironment. Second, techniques from molecular biology are being exploited to visualize subcellular structures and protein activities within individual cells of interest, and relate those to phenotypic decisions, opening the door for "in vivo cell biology". Third, combining IV-MPM with additional imaging modalities, or omics studies, holds promise for linking the cell phenotype to its genotype, metabolic state or tissue location. Finally, the clinical use of IV-MPM for analyzing efficacy of anti-cancer treatments is steadily growing, suggesting a future role of IV-MPM for personalized medicine. Conclusion IV-MPM has revolutionized visualization of tumor-microenvironment interactions in real time. Moving forward, incorporation of novel optics, automated image processing, and omics technologies, in the study of cancer biology, will not only advance our understanding of the underlying complexities but will also leverage the unique aspects of IV-MPM for clinical use.
Collapse
Affiliation(s)
- Louisiane Perrin
- Department of BioengineeringTemple UniversityPhiladelphiaPennsylvania
| | | | - Bojana Gligorijevic
- Department of BioengineeringTemple UniversityPhiladelphiaPennsylvania
- Fox Chase Cancer CenterCancer Biology ProgramPhiladelphiaPennsylvania
| |
Collapse
|