1
|
Zhan X, Li J, Zeng R, Lei L, Feng A, Yang Z. MiR-92a-2-5p suppresses esophageal squamous cell carcinoma cell proliferation and invasion by targeting PRDX2. Exp Cell Res 2024; 435:113925. [PMID: 38211680 DOI: 10.1016/j.yexcr.2024.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/09/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
MicroRNAs (miRNAs) can function as negative regulators of gene expression by binding to the 3'-untranslated region (3'-UTR) of target genes. The aberrant expression of miRNAs in neoplasm is extensively associated with tumorigenesis and cancer progression, including esophageal squamous cell carcinoma (ESCC). Our previous investigation has identified the oncogenic roles of Peroxiredoxin2 (PRDX2) in ESCC progression; however, its upstream regulatory mechanism remains to be elucidated. By merging the prediction results from miRWalk2.0 and miRNA differential expression analysis results based on The Cancer Genome Atlas Esophageal Carcinoma (TCGA-ESCA) database, eight miRNA candidates were predicted to be the potential regulatory miRNAs of PRDX2, followed by further identification of miR-92a-2-5p as the putative miRNA of PRDX2. Subsequent functional studies demonstrated that miR-92a-2-5p can suppress ESCC cell proliferation and migration, as well as tumor growth in subcutaneous tumor xenograft models, which might be mediated by the suppression of AKT/mTOR and Wnt3a/β-catenin signaling pathways upon miR-92a-2-5p mimic transfection condition. These data revealed the tumor suppressive functions of miR-92a-2-5p in ESCC by targeting PRDX2.
Collapse
Affiliation(s)
- Xiang Zhan
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Jixian Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Renya Zeng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| | - Lingli Lei
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Alei Feng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China; Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| |
Collapse
|
2
|
He M, Jia Y, Wang Y, Cai X. Dysregulated MAPK signaling pathway in acute myeloid leukemia with RUNX1 mutations. Expert Rev Hematol 2022; 15:769-779. [PMID: 35902358 DOI: 10.1080/17474086.2022.2108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND : Acute myeloid leukemia (AML) is a hematologic malignancy with genetic alterations. RUNX1, which is an essential transcription factor for hematopoiesis, is frequently mutated in AML. Loss of function mutation of RUNX1 is correlated to poor prognosis of AML patients. It is urgent to reveal the underlying mechanism. RESEARCH DESIGN AND METHODS TCGA AML, GSE106291, GSE142700 and GSE67609 datasets were used. R package was used for define the differential expressed miRNAs, miRNA target genes, RUNX1 related gene, RUNX directly regulating genes, and so on. The relationship of gene expression with overall survival was analyzed by cox regression. KEGG and GO analysis were applied to the above mentioned genesets and overlapped genes. Alteration and importance of MAPK pathway was validated in K562 cells by Western blotting and apoptosis assay in vitro. RESULTS RUNX1 regulated MAPK pathway indirectly and directly. MAPK pathway was altered in K562 cells induced mutated RUNX1, and these cells were more sensitive to AraC after p38 was inhibited. CONCLUSIONS RUNX1 could modulate MAPK pathway, which may provide a potential therapeutic target for AML patients with RUNX1 mutations.
Collapse
Affiliation(s)
- Mingmin He
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongqin Jia
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiongwei Cai
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
3
|
Liu J, Yang T, Huang Z, Chen H, Bai Y. Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review). Int J Mol Med 2022; 50:92. [PMID: 35593304 DOI: 10.3892/ijmm.2022.5148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of endogenous non‑coding small RNA that regulates gene expression. miRNAs regulate gene expression at the post‑transcriptional level by targeting the 3'‑untranslated region (3'UTR) of cytoplasmic messenger RNAs (mRNAs). Recent research has confirmed the presence of mature miRNAs in the nucleus, which bind nascent RNA transcripts, gene promoter or enhancer regions, and regulate gene expression via epigenetic pathways. Some miRNAs have been shown to function as oncogenes or tumor suppressor genes by modulating molecular pathways involved in human cancers. Notably, a novel molecular mechanism underlying the dysregulation of miRNA expression in cancer has recently been discovered, indicating that miRNAs may be involved in tumorigenesis via a nuclear function that influences gene transcription and epigenetic states, elucidating their potential therapeutic implications. The present review article discusses the import of nuclear miRNAs, nucleus‑cytoplasm transport mechanisms and the nuclear functions of miRNAs in cancer. In addition, some software tools for predicting miRNA binding sites are also discussed. Nuclear miRNAs supplement miRNA regulatory networks in cancer as a non‑canonical aspect of miRNA action. Further research into this aspect may be critical for understanding the role of nuclear miRNAs in the development of human cancers.
Collapse
Affiliation(s)
- Junjie Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Tianhao Yang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Zishen Huang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Huifang Chen
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| |
Collapse
|
4
|
Dweep H, Showe LC, Kossenkov AV. Functional Annotation of MicroRNAs Using Existing Resources. Methods Mol Biol 2022; 2257:57-77. [PMID: 34432273 DOI: 10.1007/978-1-0716-1170-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small noncoding RNAs that are involved in most biological signaling pathways, including the cell cycle, apoptosis, proliferation, immune response, metabolism as well as in biological processes including organ development and in human diseases like cancers. During the past two decades, high-throughput transcriptomic profiling using next generation sequencing and microarrays have been extensively utilized to identify differentially expressed miRNAs across different conditions and diseases. A natural extension of miRNA identification is to the process of functionally annotating known or predicted gene targets of those miRNAs and, by inference, revealing their potential influences on diverse biological pathways and functions. In this chapter, we provide a stepwise guideline on how to perform functional enrichment analyses on miRNAs of interest using publicly available resources such as miRWalk2.0.
Collapse
Affiliation(s)
- Harsh Dweep
- The Wistar Institute, Philadelphia, PA, USA.
| | | | | |
Collapse
|
5
|
Lv X, Sun Y, Tan W, Liu Y, Wen N, Fu S, Yu L, Liu T, Qi X, Shu N, Du Y, Zhang W, Meng Y. NONMMUT140591.1 may serve as a ceRNA to regulate Gata5 in UT-B knockout-induced cardiac conduction block. Open Life Sci 2021; 16:1240-1251. [PMID: 34901457 PMCID: PMC8627919 DOI: 10.1515/biol-2021-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 01/16/2023] Open
Abstract
We intended to explore the potential molecular mechanisms underlying the cardiac conduction block inducted by urea transporter (UT)-B deletion at the transcriptome level. The heart tissues were harvested from UT-B null mice and age-matched wild-type mice for lncRNA sequencing analysis. Based on the sequencing data, the differentially expressed mRNAs (DEMs) and lncRNAs (DELs) between UT-B knockout and control groups were identified, followed by function analysis and mRNA-lncRNA co-expression analysis. The miRNAs were predicted, and then the competing endogenous RNA (ceRNA) network was constructed. UT-B deletion results in the aberrant expression of 588 lncRNAs and 194 mRNAs. These DEMs were significantly enriched in the inflammation-related pathway. A lncRNA-mRNA co-expression network and a ceRNA network were constructed on the basis of the DEMs and DELs. The complement 7 (C7)-NONMMUT137216.1 co-expression pair had the highest correlation coefficient in the co-expression network. NONMMUT140591.1 had the highest degree in the ceRNA network and was involved in the ceRNA of NONMMUT140591.1-mmu-miR-298-5p-Gata5 (GATA binding protein 5). UT-B deletion may promote cardiac conduction block via inflammatory process. The ceRNA NONMMUT140591.1-mmu-miR-298-5p-Gata5 may be a potential molecular mechanism of UT-B knockout-induced cardiac conduction block.
Collapse
Affiliation(s)
- Xuejiao Lv
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| | - Yuxin Sun
- Department of Otolaryngology, Jilin University, Changchun, Jilin, 130021, China
| | - Wenxi Tan
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| | - Yang Liu
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| | - Naiyan Wen
- Department of Nursing, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Shuang Fu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Lanying Yu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Tiantian Liu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Xiaocui Qi
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Nanqi Shu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Yanwei Du
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Wenfeng Zhang
- Department of Prescriptions, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Yan Meng
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| |
Collapse
|
6
|
Identifying Key MicroRNAs Targeted by Narenmandula in a Rodent Nephropathy Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9196379. [PMID: 33299464 PMCID: PMC7707998 DOI: 10.1155/2020/9196379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Background Untreated nephropathy can progress to renal failure. The traditional Mongolian remedy Narenmandula regulates the kidney “yang.” This study aimed to identify key microRNAs (miRNAs) targeted by Narenmandula in a rat model of nephropathy. Methods Fifteen rats exhibiting normal renal function were randomized to three study arms. Nephropathy was induced in n = 10 rats using doxorubicin hydrochloride, followed by either Narenmandula treatment (treatment group) or no treatment (control group). In n = 5 rats, no doxorubicin was given and renal function remained unchanged (healthy group). Microarray analysis identified miRNAs which were differentially expressed (DE-miRNAs) between groups. Target genes of DE-miRNAs were predicted using miRWalk version 2.0, followed by enrichment analysis using DAVID, and construction of the miRNA coregulatory network using Cytoscape. Results Nephropathy was successfully induced, with doxorubicin resulting in differential expression of 3645 miRNAs (1324 upregulated and 2321 downregulated). Narenmandula treatment induced differential expression of a total of 159 miRNAs (102 upregulated and 57 downregulated). Upregulated DE-miRNAs (e.g., miR-497-5p, miR-195-5p, miR-181a-5p, miR-181c-5p, and miR-30e-5p) and downregulated DE-miRNAs (e.g., miR-330-3p and miR-214-3p) regulated a high number of target genes. Moreover, the miRNA pairs (e.g., miR-195-5p—miR-497-5p, miR-181a-5p—miR-181c-5p, and miR-30e-5p—miR-30a-5p) coregulated a high number of genes. Enrichment analysis indicated functional synergy between miR-30e-5p—miR-30a-3p, miR-34a-5p—miR-30e-5p, miR-30e-5p—miR-195-3p, and miR-30a-3p—miR-195-3p pairs. Conclusion Narenmandula may modulate doxorubicin-induced nephropathy via targeting miR-497-5p, miR-195-5p, miR-181a-5p, miR-181c-5p, miR-30e-5p, miR-330-3p, miR-214-3p, miR-34a-5p, miR-30a-3p, and miR-30a-5p.
Collapse
|
7
|
Sha J, Arbesman J, Harter ML. Premature senescence in human melanocytes after exposure to solar UVR: An exosome and UV-miRNA connection. Pigment Cell Melanoma Res 2020; 33:671-684. [PMID: 32386350 DOI: 10.1111/pcmr.12888] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 01/10/2023]
Abstract
Ultraviolet radiation (UVR) can play two roles: induce cellular senescence and convert skin melanocytes into melanoma. To assess whether this conversion might rely on melanocytes having to first acquire a senescent phenotype, we studied the effects of physiological doses of UVR (UVA + UVB) on quiescent melanocytes in vitro. Repeated doses of UVR induced these melanocytes into a senescent-like state. Additionally, these cells secrete exosomes with specific miRNAs that differ in quantity from those of the un-irradiated melanocytes. Many of the exosomal miRNAs that were differentially enriched regulated genes comprising a "senescence core signature" and encoding factors of the senescence-messaging secretome (SASP), while a subset of the differentially reduced miRNAs targeted DNA repair genes that have been experimentally shown to be repressed in senescent melanocytes. Thus, the selection of specific miRNAs by exosomes and their release from melanocytes after exposure to UVR have activities in inducing these cells into premature senescence.
Collapse
Affiliation(s)
- Jingfeng Sha
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Joshua Arbesman
- Dermatology and Plastic Surgery Institute and Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Marian L Harter
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Parveen A, Mustafa SH, Yadav P, Kumar A. Applications of Machine Learning in miRNA Discovery and Target Prediction. Curr Genomics 2020; 20:537-544. [PMID: 32581642 PMCID: PMC7290058 DOI: 10.2174/1389202921666200106111813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 11/28/2022] Open
Abstract
MicroRNA (miRNA) is a small non-coding molecule that is involved in gene regulation and RNA silencing by complementary on their targets. Experimental methods for target prediction can be time-consuming and expensive. Thus, the application of the computational approach is implicated to enlighten these complications with experimental studies. However, there is still a need for an optimized approach in miRNA biology. Therefore, machine learning (ML) would initiate a new era of research in miRNA biology towards potential diseases biomarker. In this article, we described the application of ML approaches in miRNA discovery and target prediction with functions and future prospective. The implementation of a new era of computational methodologies in this direction would initiate further advanced levels of discoveries in miRNA.
Collapse
Affiliation(s)
- Alisha Parveen
- 1Institute of Medical Bioinformatics and Systems Medicine Medical Center, Faculty of Medicine, Albert-Ludwigs University of Freiburg, 79110Freiburg, Germany; 2Department of Computer Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India; 3Department of Bioscience and Bio- engineering, Indian Institute of Technology, Jodhpur, India; 4Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; 5Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India
| | - Syed H Mustafa
- 1Institute of Medical Bioinformatics and Systems Medicine Medical Center, Faculty of Medicine, Albert-Ludwigs University of Freiburg, 79110Freiburg, Germany; 2Department of Computer Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India; 3Department of Bioscience and Bio- engineering, Indian Institute of Technology, Jodhpur, India; 4Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; 5Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India
| | - Pankaj Yadav
- 1Institute of Medical Bioinformatics and Systems Medicine Medical Center, Faculty of Medicine, Albert-Ludwigs University of Freiburg, 79110Freiburg, Germany; 2Department of Computer Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India; 3Department of Bioscience and Bio- engineering, Indian Institute of Technology, Jodhpur, India; 4Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; 5Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India
| | - Abhishek Kumar
- 1Institute of Medical Bioinformatics and Systems Medicine Medical Center, Faculty of Medicine, Albert-Ludwigs University of Freiburg, 79110Freiburg, Germany; 2Department of Computer Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India; 3Department of Bioscience and Bio- engineering, Indian Institute of Technology, Jodhpur, India; 4Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India; 5Manipal Academy of Higher Education (MAHE), Manipal576104, Karnataka, India
| |
Collapse
|
9
|
Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer 2018; 17:64. [PMID: 29471827 PMCID: PMC5822656 DOI: 10.1186/s12943-018-0765-5] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs that contain approximately 22 nucleotides. They serve as key regulators in various biological processes and their dysregulation is implicated in many diseases including cancer and autoimmune disorders. It has been well established that the maturation of miRNAs occurs in the cytoplasm and miRNAs exert post-transcriptional gene silencing (PTGS) via RNA-induced silencing complex (RISC) pathway in the cytoplasm. However, numerous studies reaffirm the existence of mature miRNA in the nucleus, and nucleus-cytoplasm transport mechanism has also been illustrated. Moreover, active regulatory functions of nuclear miRNAs were found including PTGS, transcriptional gene silencing (TGS), and transcriptional gene activation (TGA), in which miRNAs bind nascent RNA transcripts, gene promoter regions or enhancer regions and exert further effects via epigenetic pathways. Based on existing interaction rules, some miRNA binding sites prediction software tools are developed, which are evaluated in this article. In addition, we attempt to explore and review the nuclear functions of miRNA in immunity, tumorigenesis and invasiveness of tumor. As a non-canonical aspect of miRNA action, nuclear miRNAs supplement miRNA regulatory networks and could be applied in miRNA based therapies.
Collapse
Affiliation(s)
- Hongyu Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Cheng Lei
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Qin He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Zou Pan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China.
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|