1
|
Gharios R, Li A, Kopyeva I, Francis RM, DeForest CA. One-Step Purification and N-Terminal Functionalization of Bioactive Proteins via Atypically Split Inteins. Bioconjug Chem 2024; 35:750-757. [PMID: 38815180 PMCID: PMC11262789 DOI: 10.1021/acs.bioconjchem.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Site-specific installation of non-natural functionality onto proteins has enabled countless applications in biotechnology, chemical biology, and biomaterials science. Though the N-terminus is an attractive derivatization location, prior methodologies targeting this site have suffered from low selectivity, a limited selection of potential chemical modifications, and/or challenges associated with divergent protein purification/modification steps. In this work, we harness the atypically split VidaL intein to simultaneously N-functionalize and purify homogeneous protein populations in a single step. Our method─referred to as VidaL-tagged expression and protein ligation (VEPL)─enables modular and scalable production of N-terminally modified proteins with native bioactivity. Demonstrating its flexibility and ease of use, we employ VEPL to combinatorially install 4 distinct (multi)functional handles (e.g., biotin, alkyne, fluorophores) to the N-terminus of 4 proteins that span three different classes: fluorescent (Enhanced Green Fluorescent Protein, mCherry), enzymatic (β-lactamase), and growth factor (epidermal growth factor). Moving forward, we anticipate that VEPL's ability to rapidly generate and isolate N-modified proteins will prove useful across the growing fields of applied chemical biology.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Annabella Li
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - Ryan M Francis
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98105, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98105, United States
- Institute for Protein Design, University of Washington, Seattle ,Washington 98105, United States
| |
Collapse
|
2
|
Bridge HN, Leiter W, Frazier CL, Weeks AM. An N terminomics toolbox combining 2-pyridinecarboxaldehyde probes and click chemistry for profiling protease specificity. Cell Chem Biol 2024; 31:534-549.e8. [PMID: 37816350 PMCID: PMC10960722 DOI: 10.1016/j.chembiol.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Proteomic profiling of protease-generated N termini provides key insights into protease function and specificity. However, current technologies have sequence limitations or require specialized synthetic reagents for N-terminal peptide isolation. Here, we introduce an N terminomics toolbox that combines selective N-terminal biotinylation using 2-pyridinecarboxaldehyde (2PCA) reagents with chemically cleavable linkers to enable efficient enrichment of protein N termini. By incorporating a commercially available alkyne-modified 2PCA in combination with Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), our strategy eliminates the need for chemical synthesis of N-terminal probes. Using these reagents, we developed PICS2 (Proteomic Identification of Cleavage Sites with 2PCA) to profile the specificity of subtilisin/kexin-type proprotein convertases (PCSKs). We also implemented CHOPPER (chemical enrichment of protease substrates with purchasable, elutable reagents) for global sequencing of apoptotic proteolytic cleavage sites. Based on their broad applicability and ease of implementation, PICS2 and CHOPPER are useful tools that will advance our understanding of protease biology.
Collapse
Affiliation(s)
- Haley N Bridge
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - William Leiter
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Clara L Frazier
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Amy M Weeks
- Department of Biochemistry, University of Wisconsin - Madison, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Liu L, Gray JL, Tate EW, Yang A. Bacterial enzymes: powerful tools for protein labeling, cell signaling, and therapeutic discovery. Trends Biotechnol 2023; 41:1385-1399. [PMID: 37328400 DOI: 10.1016/j.tibtech.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Bacteria have evolved a diverse set of enzymes that enable them to subvert host defense mechanisms as well as to form part of the prokaryotic immune system. Due to their unique and varied biochemical activities, these bacterial enzymes have emerged as key tools for understanding and investigating biological systems. In this review, we summarize and discuss some of the most prominent bacterial enzymes used for the site-specific modification of proteins, in vivo protein labeling, proximity labeling, interactome mapping, signaling pathway manipulation, and therapeutic discovery. Finally, we provide a perspective on the complementary advantages and limitations of using bacterial enzymes compared with chemical probes for exploring biological systems.
Collapse
Affiliation(s)
- Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Janine L Gray
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
4
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
5
|
Bridge HN, Weeks AM. Proteome-Derived Peptide Libraries for Deep Specificity Profiling of N-terminal Modification Reagents. Curr Protoc 2023; 3:e798. [PMID: 37283519 PMCID: PMC10338020 DOI: 10.1002/cpz1.798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein and peptide N termini are important targets for selective modification with chemoproteomics reagents and bioconjugation tools. The N-terminal ⍺-amine occurs only once in each polypeptide chain, making it an attractive target for protein bioconjugation. In cells, new N termini can be generated by proteolytic cleavage and captured by N-terminal modification reagents that enable proteome-wide identification of protease substrates through tandem mass spectrometry (LC-MS/MS). An understanding of the N-terminal sequence specificity of the modification reagents is critical for each of these applications. Proteome-derived peptide libraries in combination with LC-MS/MS are powerful tools for profiling the sequence specificity of N-terminal modification reagents. These libraries are highly diverse, and LC-MS/MS enables analysis of the modification efficiencies of tens of thousands of sequences in a single experiment. Proteome-derived peptide libraries are a powerful tool for profiling the sequence specificities of enzymatic and chemical peptide labeling reagents. Subtiligase, an enzymatic modification reagent, and 2-pyridinecarboxaldehyde (2PCA), a chemical modification reagent, are two reagents that have been developed for selective N-terminal peptide modification and can be studied using proteome-derived peptide libraries. This protocol outlines the steps for generating N-terminally diverse proteome-derived peptide libraries and for applying these libraries to profile the specificity of N-terminal modification reagents. Although we detail the steps for profiling the specificity of 2PCA and subtiligase in Escherichia coli and human cells, these protocols can easily be adapted to alternative proteome sources and other N-terminal peptide labeling reagents. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of N-terminally diverse proteome-derived peptide libraries from E. coli Alternate Protocol: Generation of N-terminally diverse proteome-derived peptide libraries from human cells Basic Protocol 2: Characterizing the specificity of 2-pyridinecarboxaldehyde using proteome-derived peptide libraries Basic Protocol 3: Characterizing the specificity of subtiligase using proteome-derived peptide libraries.
Collapse
Affiliation(s)
- Haley N. Bridge
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
6
|
Adelakun N, Parrish J, Chu N. Analyzing protein posttranslational modifications using enzyme-catalyzed expressed protein ligation. Methods Enzymol 2023; 682:319-350. [PMID: 36948706 DOI: 10.1016/bs.mie.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Expressed protein ligation (EPL) allows for the attachment of a synthetic peptide into the N- or C-terminus of a recombinant protein fragment to generate a site-specifically modified protein with substantial yields for biochemical and biophysical studies. In this method, multiple posttranslational modifications (PTMs) can be incorporated into a synthetic peptide containing an N-terminal Cysteine, which selectively reacts with a protein C-terminal thioester to afford an amide bond formation. However, the requirement of a Cysteine at the ligation site can limit EPL's potential applications. Here, we describe a method called enzyme-catalyzed EPL, which uses subtiligase to ligate protein thioesters with Cysteine-free peptides. The procedure includes generating protein C-terminal thioester and peptide, performing the enzymatic EPL reaction, and purifying the protein ligation product. We exemplify this method by generating phospholipid phosphatase PTEN with site-specific phosphorylations installed onto its C-terminal tail for biochemical assays.
Collapse
Affiliation(s)
- Niyi Adelakun
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jordan Parrish
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Nam Chu
- Department of Cancer Biology and Genetics, the Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
7
|
Schaefer K, Lui I, Byrnes JR, Kang E, Zhou J, Weeks AM, Wells JA. Direct Identification of Proteolytic Cleavages on Living Cells Using a Glycan-Tethered Peptide Ligase. ACS CENTRAL SCIENCE 2022; 8:1447-1456. [PMID: 36313159 PMCID: PMC9615116 DOI: 10.1021/acscentsci.2c00899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 06/16/2023]
Abstract
Proteolytic cleavage of cell surface proteins triggers critical processes including cell-cell interactions, receptor activation, and shedding of signaling proteins. Consequently, dysregulated extracellular proteases contribute to malignant cell phenotypes including most cancers. To understand these effects, methods are needed that identify proteolyzed membrane proteins within diverse cellular contexts. Herein we report a proteomic approach, called cell surface N-terminomics, to broadly identify precise cleavage sites (neo-N-termini) on the surface of living cells. First, we functionalized the engineered peptide ligase, called stabiligase, with an N-terminal nucleophile that enables covalent attachment to naturally occurring glycans. Upon the addition of a biotinylated peptide ester, glycan-tethered stabiligase efficiently tags extracellular neo-N-termini for proteomic analysis. To demonstrate the versatility of this approach, we identified and characterized 1532 extracellular neo-N-termini across a panel of different cell types including primary immune cells. The vast majority of cleavages were not identified by previous proteomic studies. Lastly, we demonstrated that single oncogenes, KRAS(G12V) and HER2, induce extracellular proteolytic remodeling of proteins involved in cancerous cell growth, invasion, and migration. Cell surface N-terminomics is a generalizable platform that can reveal proteolyzed, neoepitopes to target using immunotherapies.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Irene Lui
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James R. Byrnes
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Emily Kang
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Jie Zhou
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Amy M. Weeks
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
8
|
Jiang H, Chen W, Wang J, Zhang R. Selective N-terminal modification of peptides and proteins: Recent progresses and applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Abstract
N terminomics methods combine selective isolation of protein N-terminal peptides with mass spectrometry (MS)-based proteomics for global profiling of proteolytic cleavage sites. However, traditional N terminomics workflows require cell lysis before N-terminal enrichment and provide poor coverage of N termini derived from cell surface proteins. Here, we describe application of subtiligase-TM, a plasma membrane-targeted peptide ligase, for selective biotinylation of cell surface N termini, enabling their enrichment and analysis by liquid chromatography-tandem MS (LC-MS/MS). This method provides increased coverage of and specificity for cell surface N termini and is compatible with existing quantitative LC-MS/MS workflows.
Collapse
Affiliation(s)
- Aspasia A Amiridis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy M Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Cong M, Tavakolpour S, Berland L, Glöckner H, Andreiuk B, Rakhshandehroo T, Uslu S, Mishra S, Clark L, Rashidian M. Direct N- or C-Terminal Protein Labeling Via a Sortase-Mediated Swapping Approach. Bioconjug Chem 2021; 32:2397-2406. [PMID: 34748323 PMCID: PMC9595177 DOI: 10.1021/acs.bioconjchem.1c00442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Site-specific protein labeling is important in biomedical research and biotechnology. While many methods allow site-specific protein modification, a straightforward approach for efficient N-terminal protein labeling is not available. We introduce a novel sortase-mediated swapping approach for a one-step site-specific N-terminal labeling with a near-quantitative yield. We show that this method allows rapid and efficient cleavage and simultaneous labeling of the N or C termini of fusion proteins. The method does not require any prior modification beyond the genetic incorporation of the sortase recognition motif. This new approach provides flexibility for protein engineering and site-specific protein modifications.
Collapse
Affiliation(s)
- Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lea Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06100 Nice, France
| | - Hannah Glöckner
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Bohdan Andreiuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Safak Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara, 06230, Turkey
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
11
|
De Rosa L, Di Stasi R, Romanelli A, D’Andrea LD. Exploiting Protein N-Terminus for Site-Specific Bioconjugation. Molecules 2021; 26:3521. [PMID: 34207845 PMCID: PMC8228110 DOI: 10.3390/molecules26123521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Although a plethora of chemistries have been developed to selectively decorate protein molecules, novel strategies continue to be reported with the final aim of improving selectivity and mildness of the reaction conditions, preserve protein integrity, and fulfill all the increasing requirements of the modern applications of protein conjugates. The targeting of the protein N-terminal alpha-amine group appears a convenient solution to the issue, emerging as a useful and unique reactive site universally present in each protein molecule. Herein, we provide an updated overview of the methodologies developed until today to afford the selective modification of proteins through the targeting of the N-terminal alpha-amine. Chemical and enzymatic strategies enabling the selective labeling of the protein N-terminal alpha-amine group are described.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; (L.D.R.); (R.D.S.)
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy;
| | - Luca Domenico D’Andrea
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR Via M. Bianco 9, 20131 Milano, Italy
| |
Collapse
|
12
|
New strategies to identify protease substrates. Curr Opin Chem Biol 2020; 60:89-96. [PMID: 33220627 DOI: 10.1016/j.cbpa.2020.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
Abstract
Proteome dynamics is governed by transcription, translation, and post-translational modifications. Limited proteolysis is an irreversible post-translational modification that generates multiple but unique proteoforms from almost every native protein. Elucidating these proteoforms and understanding their dynamics at a system-wide level is of utmost importance because uncontrolled proteolytic cleavages correlate with many pathologies. Mass spectrometry-based degradomics has revolutionized protease research and invented workflows for global identification of protease substrates with resolution down to precise cleavage sites. In this review, we provide an overview of current strategies in protease substrate degradomics and introduce the concept of workflow, mass spectrometry-based and in silico enrichment of protein termini with the perspective of full deconvolution of digital proteome maps for precision medicine, and degradomics biomarker diagnostics.
Collapse
|
13
|
Frazier CL, Weeks AM. Engineered peptide ligases for cell signaling and bioconjugation. Biochem Soc Trans 2020; 48:1153-1165. [PMID: 32539119 PMCID: PMC8350744 DOI: 10.1042/bst20200001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022]
Abstract
Enzymes that catalyze peptide ligation are powerful tools for site-specific protein bioconjugation and the study of cellular signaling. Peptide ligases can be divided into two classes: proteases that have been engineered to favor peptide ligation, and protease-related enzymes with naturally evolved peptide ligation activity. Here, we provide a review of key natural peptide ligases and proteases engineered to favor peptide ligation activity. We cover the protein engineering approaches used to generate and improve these tools, along with recent biological applications, advantages, and limitations associated with each enzyme. Finally, we address future challenges and opportunities for further development of peptide ligases as tools for biological research.
Collapse
Affiliation(s)
- Clara L. Frazier
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|