1
|
Das N, Panda D, Gajendra S, Gupta R, Thakral D, Kaur G, Khan A, Singh VK, Vemprala A, Bakhshi S, Seth R, Sahoo RK, Sharma A, Rai S, Prajapati VK, Singh S. Immunophenotypic characterization of leukemic stem cells in acute myeloid leukemia using single tube 10-colour panel by multiparametric flow cytometry: Deciphering the spectrum, complexity and immunophenotypic heterogeneity. Int J Lab Hematol 2024; 46:646-656. [PMID: 38456256 DOI: 10.1111/ijlh.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION Despite extensive research, comprehensive characterization of leukaemic stem cells (LSC) and information on their immunophenotypic differences from normal haematopoietic stem cells (HSC) is lacking. Herein, we attempted to unravel the immunophenotypic (IPT) characteristics and heterogeneity of LSC using multiparametric flow cytometry (MFC) and single-cell sequencing. MATERIALS AND METHODS Bone marrow aspirate samples from patients with acute myeloid leukaemia (AML) were evaluated using MFC at diagnostic and post induction time points using a single tube-10-colour-panel containing LSC-associated antibodies CD123, CD45RA, CD44, CD33 and COMPOSITE (CLL-1, TIM-3, CD25, CD11b, CD22, CD7, CD56) with backbone markers that is, CD45, CD34, CD38, CD117, sCD3. Single-cell sequencing of the whole transcriptome was also done in a bone marrow sample. RESULTS LSCs and HSCs were identified in 225/255 (88.2%) and 183/255 (71.6%) samples, respectively. Significantly higher expression was noted for COMPOSITE, CD45RA, CD123, CD33, and CD44 in LSCs than HSCs (p < 0.0001). On comparing the LSC specific antigen expressions between CD34+ (n = 184) and CD34- LSCs (n = 41), no difference was observed between the groups. More than one sub-population of LSC was demonstrated in 4.4% of cases, which further revealed high concordance between MFC and single cell transcriptomic analysis in one of the cases displaying three LSC subpopulations by both methods. CONCLUSION A single tube-10-colour MFC panel is proposed as an easy and reproducible tool to identify and discriminate LSCs from HSCs. LSCs display both inter- and intra-sample heterogeneity in terms of antigen expressions, which opens the facets for single cell molecular analysis to elucidate the role of subpopulations of LSCs in AML progression.
Collapse
Affiliation(s)
- Nupur Das
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Devasis Panda
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Smeeta Gajendra
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Ritu Gupta
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Deepshi Thakral
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Gurvinder Kaur
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Aafreen Khan
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Vivek Kumar Singh
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Arushi Vemprala
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Rachna Seth
- Department of Paediatrics, Dr. BRAIRCH, AIIMS, New Delhi, India
| | | | - Atul Sharma
- Department of Medical Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Sandeep Rai
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Vijay K Prajapati
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| | - Saroj Singh
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India
| |
Collapse
|
2
|
Hybel TE, Jensen SH, Rodrigues MA, Hybel TE, Pedersen MN, Qvick SH, Enemark MH, Bill M, Rosenberg CA, Ludvigsen M. Imaging Flow Cytometry and Convolutional Neural Network-Based Classification Enable Discrimination of Hematopoietic and Leukemic Stem Cells in Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:6465. [PMID: 38928171 PMCID: PMC11203419 DOI: 10.3390/ijms25126465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous blood cancer with a dismal prognosis. It emanates from leukemic stem cells (LSCs) arising from the genetic transformation of hematopoietic stem cells (HSCs). LSCs hold prognostic value, but their molecular and immunophenotypic heterogeneity poses challenges: there is no single marker for identifying all LSCs across AML samples. We hypothesized that imaging flow cytometry (IFC) paired with artificial intelligence-driven image analysis could visually distinguish LSCs from HSCs based solely on morphology. Initially, a seven-color IFC panel was employed to immunophenotypically identify LSCs and HSCs in bone marrow samples from five AML patients and ten healthy donors, respectively. Next, we developed convolutional neural network (CNN) models for HSC-LSC discrimination using brightfield (BF), side scatter (SSC), and DNA images. Classification using only BF images achieved 86.96% accuracy, indicating significant morphological differences. Accuracy increased to 93.42% when combining BF with DNA images, highlighting differences in nuclear morphology, although DNA images alone were inadequate for accurate HSC-LSC discrimination. Model development using SSC images revealed minor granularity differences. Performance metrics varied substantially between AML patients, indicating considerable morphologic variations among LSCs. Overall, we demonstrate proof-of-concept results for accurate CNN-based HSC-LSC differentiation, instigating the development of a novel technique within AML monitoring.
Collapse
Affiliation(s)
- Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Sofie Hesselberg Jensen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | | | - Thomas Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Maya Nautrup Pedersen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Signe Håkansson Qvick
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Marie Bill
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Carina Agerbo Rosenberg
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (T.E.H.); (M.H.E.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| |
Collapse
|
3
|
Teixeira A, Sousa-Silva M, Chícharo A, Oliveira K, Moura A, Carneiro A, Piairo P, Águas H, Sampaio-Marques B, Castro I, Mariz J, Ludovico P, Abalde-Cela S, Diéguez L. Isolation of acute myeloid leukemia blasts from blood using a microfluidic device. Analyst 2024; 149:2812-2825. [PMID: 38644740 DOI: 10.1039/d4an00158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and associated with poor prognosis. Unfortunately, most of the patients that achieve clinical complete remission after the treatment will ultimately relapse due to the persistence of minimal residual disease (MRD), that is not measurable using conventional technologies in the clinic. Microfluidics is a potential tool to improve the diagnosis by providing early detection of MRD. Herein, different designs of microfluidic devices were developed to promote lateral and vertical mixing of cells in microchannels to increase the contact area of the cells of interest with the inner surface of the device. Possible interactions between the cells and the surface were studied using fluid simulations. For the isolation of leukemic blasts, a positive selection strategy was used, targeting the cells of interest using a panel of specific biomarkers expressed in immature and aberrant blasts. Finally, once the optimisation was complete, the best conditions were used to process patient samples for downstream analysis and benchmarking, including phenotypic and genetic characterisation. The potential of these microfluidic devices to isolate and detect AML blasts may be exploited for the monitoring of AML patients at different stages of the disease.
Collapse
Affiliation(s)
- Alexandra Teixeira
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Sousa-Silva
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
- RUBYnanomed LDA, Praça Conde de Agrolongo, 4700-312 Braga, Portugal
| | - Alexandre Chícharo
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - Kevin Oliveira
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - André Moura
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Adriana Carneiro
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
- IPO Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - Hugo Águas
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Castro
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José Mariz
- Department of Oncohematology, Portuguese Institute of Oncology Francisco Gentil Porto, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| |
Collapse
|
4
|
Dimitriou M, Mortera-Blanco T, Tobiasson M, Mazzi S, Lehander M, Högstrand K, Karimi M, Walldin G, Jansson M, Vonlanthen S, Ljungman P, Langemeijer S, Yoshizato T, Hellström-Lindberg E, Woll PS, Jacobsen SEW. Identification and surveillance of rare relapse-initiating stem cells during complete remission after transplantation. Blood 2024; 143:953-966. [PMID: 38096358 PMCID: PMC10950475 DOI: 10.1182/blood.2023022851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 02/29/2024] Open
Abstract
ABSTRACT Relapse after complete remission (CR) remains the main cause of mortality after allogeneic stem cell transplantation for hematological malignancies and, therefore, improved biomarkers for early prediction of relapse remains a critical goal toward development and assessment of preemptive relapse treatment. Because the significance of cancer stem cells as a source of relapses remains unclear, we investigated whether mutational screening for persistence of rare cancer stem cells would enhance measurable residual disease (MRD) and early relapse prediction after transplantation. In a retrospective study of patients who relapsed and patients who achieved continuous-CR with myelodysplastic syndromes and related myeloid malignancies, combined flow cytometric cell sorting and mutational screening for persistence of rare relapse-initiating stem cells was performed in the bone marrow at multiple CR time points after transplantation. In 25 CR samples from 15 patients that later relapsed, only 9 samples were MRD-positive in mononuclear cells (MNCs) whereas flowcytometric-sorted hematopoietic stem and progenitor cells (HSPCs) were MRD-positive in all samples, and always with a higher variant allele frequency than in MNCs (mean, 97-fold). MRD-positivity in HSPCs preceded MNCs in multiple sequential samples, in some cases preceding relapse by >2 years. In contrast, in 13 patients in long-term continuous-CR, HSPCs remained MRD-negative. Enhanced MRD sensitivity was also observed in total CD34+ cells, but HSPCs were always more clonally involved (mean, 8-fold). In conclusion, identification of relapse-initiating cancer stem cells and mutational MRD screening for their persistence consistently enhances MRD sensitivity and earlier prediction of relapse after allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Marios Dimitriou
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Teresa Mortera-Blanco
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Tobiasson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Stefania Mazzi
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Madeleine Lehander
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kari Högstrand
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mohsen Karimi
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Gunilla Walldin
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Monika Jansson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sofie Vonlanthen
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Per Ljungman
- Division of Hematology, Department of Medicine, Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Saskia Langemeijer
- Department of Hematology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tetsuichi Yoshizato
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Eva Hellström-Lindberg
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Petter S. Woll
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sten Eirik W. Jacobsen
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Haematopoietic Stem Cell Biology Laboratory and MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Tettero JM, Heidinga ME, Mocking TR, Fransen G, Kelder A, Scholten WJ, Snel AN, Ngai LL, Bachas C, van de Loosdrecht AA, Ossenkoppele GJ, de Leeuw DC, Cloos J, Janssen JJWM. Impact of hemodilution on flow cytometry based measurable residual disease assessment in acute myeloid leukemia. Leukemia 2024; 38:630-639. [PMID: 38272991 PMCID: PMC10912027 DOI: 10.1038/s41375-024-02158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Measurable residual disease (MRD) measured in the bone marrow (BM) of acute myeloid leukemia (AML) patients after induction chemotherapy is an established prognostic factor. Hemodilution, stemming from peripheral blood (PB) mixing within BM during aspiration, can yield false-negative MRD results. We prospectively examined hemodilution by measuring MRD in BM aspirates obtained from three consecutive 2 mL pulls, along with PB samples. Our results demonstrated a significant decrease in MRD percentages between the first and second pulls (P = 0.025) and between the second and third pulls (P = 0.025), highlighting the impact of hemodilution. Initially, 39% of MRD levels (18/46 leukemia-associated immunophenotypes) exceeded the 0.1% cut-off, decreasing to 30% (14/46) in the third pull. Additionally, we assessed the performance of six published methods and parameters for distinguishing BM from PB samples, addressing or compensating for hemodilution. The most promising results relied on the percentages of CD16dim granulocytic population (scarce in BM) and CD117high mast cells (exclusive to BM). Our findings highlight the importance of estimating hemodilution in MRD assessment to qualify MRD results, particularly near the common 0.1% cut-off. To avoid false-negative results by hemodilution, it is essential to collect high-quality BM aspirations and preferably utilizing the initial pull for MRD testing.
Collapse
Affiliation(s)
- Jesse M Tettero
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Maaike E Heidinga
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Tim R Mocking
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Glenn Fransen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Angèle Kelder
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Willemijn J Scholten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Alexander N Snel
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Lok Lam Ngai
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Costa Bachas
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - David C de Leeuw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
| | - Jeroen J W M Janssen
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Matthes T. Phenotypic Analysis of Hematopoietic Stem and Progenitor Cell Populations in Acute Myeloid Leukemia Based on Spectral Flow Cytometry, a 20-Color Panel, and Unsupervised Learning Algorithms. Int J Mol Sci 2024; 25:2847. [PMID: 38474094 DOI: 10.3390/ijms25052847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The analysis of hematopoietic stem and progenitor cell populations (HSPCs) is fundamental in the understanding of normal hematopoiesis as well as in the management of malignant diseases, such as leukemias, and in their diagnosis and follow-up, particularly the measurement of treatment efficiency with the detection of measurable residual disease (MRD). In this study, I designed a 20-color flow cytometry panel tailored for the comprehensive analysis of HSPCs using a spectral cytometer. My investigation encompassed the examination of forty-six samples derived from both normal human bone marrows (BMs) and patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) along with those subjected to chemotherapy and BM transplantation. By comparing my findings to those obtained through conventional flow cytometric analyses utilizing multiple tubes, I demonstrate that my innovative 20-color approach enables a more in-depth exploration of HSPC subpopulations and the detection of MRD with at least comparable sensitivity. Furthermore, leveraging advanced analytical tools such as t-SNE and FlowSOM learning algorithms, I conduct extensive cross-sample comparisons with two-dimensional gating approaches. My results underscore the efficacy of these two methods as powerful unsupervised alternatives for manual HSPC subpopulation analysis. I expect that in the future, complex multi-dimensional flow cytometric data analyses, such as those employed in this study, will be increasingly used in hematologic diagnostics.
Collapse
Affiliation(s)
- Thomas Matthes
- Hematology Service, Oncology Department, University Hospital Geneva, Rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland
- Clinical Pathology Service, Diagnostics Department, University Hospital Geneva, Rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland
| |
Collapse
|
7
|
Chea M, Rigolot L, Canali A, Vergez F. Minimal Residual Disease in Acute Myeloid Leukemia: Old and New Concepts. Int J Mol Sci 2024; 25:2150. [PMID: 38396825 PMCID: PMC10889505 DOI: 10.3390/ijms25042150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Minimal residual disease (MRD) is of major importance in onco-hematology, particularly in acute myeloid leukemia (AML). MRD measures the amount of leukemia cells remaining in a patient after treatment, and is an essential tool for disease monitoring, relapse prognosis, and guiding treatment decisions. Patients with a negative MRD tend to have superior disease-free and overall survival rates. Considerable effort has been made to standardize MRD practices. A variety of techniques, including flow cytometry and molecular methods, are used to assess MRD, each with distinct strengths and weaknesses. MRD is recognized not only as a predictive biomarker, but also as a prognostic tool and marker of treatment efficacy. Expected advances in MRD assessment encompass molecular techniques such as NGS and digital PCR, as well as optimization strategies such as unsupervised flow cytometry analysis and leukemic stem cell monitoring. At present, there is no perfect method for measuring MRD, and significant advances are expected in the future to fully integrate MRD assessment into the management of AML patients.
Collapse
Affiliation(s)
- Mathias Chea
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
| | - Lucie Rigolot
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Alban Canali
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Francois Vergez
- Laboratoire d’Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, 31059 Toulouse, France; (M.C.); (L.R.); (A.C.)
- School of Medicine, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
8
|
Klyuchnikov E, Badbaran A, Massoud R, Freiberger P, Wolschke C, Ayuk F, Fehse B, Bacher U, Kröger N. Peri-transplant flow-MRD assessment of cells with leukemic stem cells (LSC) associated phenotype in AML patients undergoing allogeneic stem cell transplantation in CR. Leukemia 2024; 38:386-388. [PMID: 38263432 DOI: 10.1038/s41375-024-02148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Affiliation(s)
- Evgeny Klyuchnikov
- Department for Stem Cell Transplantation, University Cancer Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Anita Badbaran
- Department for Stem Cell Transplantation, University Cancer Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Radwan Massoud
- Department for Stem Cell Transplantation, University Cancer Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Freiberger
- Department for Stem Cell Transplantation, University Cancer Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Wolschke
- Department for Stem Cell Transplantation, University Cancer Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- Department for Stem Cell Transplantation, University Cancer Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Department for Stem Cell Transplantation, University Cancer Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Nicolaus Kröger
- Department for Stem Cell Transplantation, University Cancer Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Mizuta S, Iwasaki M, Bandai N, Yoshida S, Watanabe A, Takashima H, Ueshimo T, Bandai K, Fujiwara K, Hiranuma N, Koba Y, Kawata T, Tamekane A, Watanabe M. Flow cytometric analysis of CD34 + CD38 - cells; cell frequency and immunophenotype based on CD45RA expression pattern. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:35-44. [PMID: 37933409 DOI: 10.1002/cyto.b.22148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION The CD34+ CD38- population in bone marrow includes hematopoietic stem/progenitor cells. Recently, in acute myeloid leukemia, the focus has shifted to flow cytometry analysis targeting CD34+ CD38- leukemic cells due to their effectiveness in minimal/measurable residual disease detection and prognosis prediction. Nevertheless, the immunophenotype and cell frequency of these cells in the bone marrow, in the absence of leukemic cells, remains unknown. We aimed to evaluate detailed characteristics of CD34+ CD38- cells in both normal and leukemic cells by flow cytometry. METHODS We compared the cell frequency and immunophenotype of the CD34+ CD38- fraction in the following groups: patients with idiopathic thrombocytopenic purpura and malignant lymphoma as controls (n = 17), post-treatment patients without abnormal blasts (n = 35), and patients with myeloid malignancies (n = 86). The comparison was based on the presence or absence of CD45RA expression, a marker commonly used to prospectively isolate lymphoid-primed cell populations within the CD34+ CD38- fraction. RESULTS The CD34+ CD38- CD45RA+ cell population exhibited a significant expansion in bone marrow without leukemic cells 1 month after cord blood transplantation and in various type of myeloid malignancies, compared to the control group (p < 0.01). Continuous CD45RA expression and notable expansion of the CD34+ CD38- CD45RA- population were exclusively observed in myelodysplastic syndrome-related diseases. The CD34+ CD38- CD45RA+ population displayed frequent expression of various markers in both leukemic and non-leukemic cells, in contrast to the CD34+ CD38- CD45RA- population. CONCLUSIONS The CD34+ CD38- fraction should be carefully evaluated considering the nature of normal hematopoietic precursor cells, their cell frequency and immunophenotype, including CD45RA expression pattern, for improving the accuracy of myeloid malignancy diagnosis.
Collapse
Affiliation(s)
- Shumpei Mizuta
- Department of Clinical Laboratory, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Makoto Iwasaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriko Bandai
- Department of Clinical Laboratory, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Hyogo, Japan
| | - Saya Yoshida
- Department of Clinical Laboratory, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Asami Watanabe
- Department of Clinical Laboratory, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Hiroshi Takashima
- Department of Clinical Laboratory, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Takeshi Ueshimo
- Department of Clinical Laboratory, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Kazuhiro Bandai
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Kensuke Fujiwara
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Naoko Hiranuma
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Yusuke Koba
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Takahito Kawata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Akira Tamekane
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| | - Mitsumasa Watanabe
- Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan
| |
Collapse
|
10
|
Tettero JM, Buisman Y, Ngai LL, Bachas C, Gjertsen BT, Kelder A, van de Loosdrecht AA, Manz MG, Pabst T, Scholten W, Ossenkoppele GJ, Cloos J, de Leeuw DC. Prognostic Significance of Measurable Residual Disease Detection by Flow Cytometry in Autologous Stem Cell Apheresis Products in AML. Hemasphere 2023; 7:e981. [PMID: 38026789 PMCID: PMC10664848 DOI: 10.1097/hs9.0000000000000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Jesse M. Tettero
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Yara Buisman
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Lok Lam Ngai
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | | | - Angèle Kelder
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital, Zurich, Switzerland
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
| | - Thomas Pabst
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital, Bern, Switzerland
| | - Willemijn Scholten
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - David C. de Leeuw
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Tettero JM, Dakappagari N, Heidinga ME, Oussoren-Brockhoff Y, Hanekamp D, Pahuja A, Burns K, Kaur P, Alfonso Z, van der Velden VHJ, Te Marvelde JG, Hobo W, Slomp J, Bachas C, Kelder A, Nguyen K, Cloos J. Analytical assay validation for acute myeloid leukemia measurable residual disease assessment by multiparametric flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:426-439. [PMID: 37766649 DOI: 10.1002/cyto.b.22144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Measurable residual disease (MRD) assessed by multiparametric flow cytometry (MFC) has gained importance in clinical decision-making for acute myeloid leukemia (AML) patients. However, complying with the recent In Vitro Diagnostic Regulations (IVDR) in Europe and Food and Drug Administration (FDA) guidance in the United States requires rigorous validation prior to their use in investigational clinical trials and diagnostics. Validating AML MRD-MFC assays poses challenges due to the unique underlying disease biology and paucity of patient specimens. In this study, we describe an experimental framework for validation that meets regulatory expectations. METHODS Our validation efforts focused on evaluating assay accuracy, analytical specificity, analytical and functional sensitivity (limit of blank (LoB), detection (LLoD) and quantitation (LLoQ)), precision, linearity, sample/reagent stability and establishing the assay background frequencies. RESULTS Correlation between different MFC methods was highly significant (r = 0.99 for %blasts and r = 0.93 for %LAIPs). The analysis of LAIP specificity accurately discriminated from negative control cells. The assay demonstrated a LoB of 0.03, LLoD of 0.04, and LLoQ of 0.1%. Precision experiments yielded highly reproducible results (Coefficient of Variation <20%). Stability experiments demonstrated reliable measurement of samples up to 96 h from collection. Furthermore, the reference range of LAIP frequencies in non-AML patients was below 0.1%, ranging from 0.0% to 0.04%. CONCLUSION In this manuscript, we present the validation of an AML MFC-MRD assay using BM/PB patient specimens, adhering to best practices. Our approach is expected to assist other laboratories in expediting their validation activities to fulfill recent health authority guidelines.
Collapse
Affiliation(s)
- Jesse M Tettero
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | | | - Maaike E Heidinga
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Yvonne Oussoren-Brockhoff
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Diana Hanekamp
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anil Pahuja
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Kerri Burns
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Pavinder Kaur
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Zeni Alfonso
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | | | - Jeroen G Te Marvelde
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine-Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jennichjen Slomp
- Department of Clinical Chemistry, Medisch Spectrum Twente/Medlon, Enschede, The Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Angele Kelder
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Kevin Nguyen
- Navigate BioPharma (a Novartis Subsidiary), Carlsbad, California, USA
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Zhao Y, Guo H, Chang Y. MRD-directed and risk-adapted individualized stratified treatment of AML. Chin J Cancer Res 2023; 35:451-469. [PMID: 37969959 PMCID: PMC10643342 DOI: 10.21147/j.issn.1000-9604.2023.05.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Measurable residual disease (MRD) has been widely recognized as a biomarker for deeply evaluating complete remission (CR), predicting relapse, guiding pre-emptive interventions, and serving as an endpoint surrogate for drug testing. However, despite the emergence of new technologies, there remains a lack of comprehensive understanding regarding the proper techniques, sample materials, and optimal time points for MRD assessment. In this review, we summarized the MRD methods, sample sources, and evaluation frequency according to the risk category of the European Leukemia Net (ELN) 2022. Additionally, we emphasize the importance of properly utilizing and combining these technologies. We have also refined the flowchart outlining each time point for pre-emptive interventions and intervention paths. The evaluation of MRD in acute myeloid leukemia (AML) is sophisticated, clinically applicable, and technology-dependent, and necessitates standardized approaches and further research.
Collapse
Affiliation(s)
- Yijing Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Hanfei Guo
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto 94304, USA
- the First Hospital of Jilin University, Cancer Center, Changchun 133021, China
| | - Yingjun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
13
|
Ngai LL, Hanekamp D, Janssen F, Carbaat-Ham J, Hofland MAMA, Fayed MMHE, Kelder A, Oudshoorn-van Marsbergen L, Scholten WJ, Snel AN, Bachas C, Tettero JM, Breems DA, Fischer T, Gjertsen BT, Griškevičius L, Juliusson G, van de Loosdrecht AA, Maertens JA, Manz MG, Pabst T, Passweg JR, Porkka K, Valk PJM, Gradowska P, Löwenberg B, de Leeuw DC, Janssen JJWM, Ossenkoppele GJ, Cloos J. Prospective validation of the prognostic relevance of CD34+CD38- AML stem cell frequency in the HOVON-SAKK132 trial. Blood 2023; 141:2657-2661. [PMID: 36898087 PMCID: PMC10646801 DOI: 10.1182/blood.2022019160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Affiliation(s)
- Lok Lam Ngai
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Diana Hanekamp
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Fleur Janssen
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jannemieke Carbaat-Ham
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Maaike A. M. A. Hofland
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Mona M. H. E Fayed
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Angèle Kelder
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Laura Oudshoorn-van Marsbergen
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Willemijn J. Scholten
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Alexander N. Snel
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jesse M. Tettero
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Dimitri A. Breems
- Department of Hematology, Ziekenhuis Netwerk Antwerpen, Antwerp, Belgium
| | - Thomas Fischer
- Department of Hematology and Oncology, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany
| | - Bjørn T. Gjertsen
- Department of Clinical Science, Haukeland University Hospital, Bergen, Norway
| | - Laimonas Griškevičius
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos and Vilnius University, Vilnius, Lithuania
| | - Gunnar Juliusson
- Department of Hematology, Skanes University Hospital, Lund, Sweden
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Johan A. Maertens
- Department of Hematology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital, Zurich, Switzerland
- Swiss Group for Clinical Cancer Research, Bern, Switzerland
| | - Thomas Pabst
- Swiss Group for Clinical Cancer Research, Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital, Bern, Switzerland
| | - Jakob R. Passweg
- Swiss Group for Clinical Cancer Research, Bern, Switzerland
- Department of Hematology, University Hospital, Basel, Switzerland
| | - Kimmo Porkka
- Department of Hematology, Helsinki University Hospital Cancer Center, Helsinki, Finland
| | | | - Patrycja Gradowska
- Dutch-Belgian Hemato-Oncology Cooperative Group Data Center–Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - David C. de Leeuw
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jeroen J. W. M. Janssen
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Cancer Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Maag AH, Swanton H, Kull M, Vegi NM, Feuring M. Immunophenotypical profiling of myeloid neoplasms with erythroid predominance using mass cytometry (CyTOF). Cytometry A 2023. [PMID: 36647792 DOI: 10.1002/cyto.a.24716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/10/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Acute erythroid leukemia (AEL) is a disease continuum between Myelodysplastic syndrome (MDS) and Acute myeloid leukemia (AML) with the cellular hallmark of uncontrolled proliferation and impaired differentiation of erythroid progenitor cells. First described by Giovanni di Guglielmo in 1917 AEL accounts for less than 5% of all de novo AML cases. There have been efforts to characterize AEL at a molecular level, describing recurrent alterations in TP53, NPM1 and FLT3 genes. A genomic analysis of AEL cases confirmed its complexity. Despite these advances, the biology underlying erythroid proliferations remains unclear and the prognosis is dismal with a median survival of only 3 months for pure erythroid leukemia (PEL). Marker combinations suitable for the identification and characterization of leukemic stem cell (LSC) candidates, monitoring measurable residual disease (MRD) during chemotherapy treatment and the development of innovative targeted therapies are missing. Here, we developed a mass cytometry panel for an in-depth characterization of erythroid and myeloid blast cell populations from human AEL bone marrow samples in comparison to other AML subtypes and healthy counterparts. A total of 8 AEL samples were analyzed and compared to 28 AML samples from different molecular subtypes, healthy bone marrow counterparts (n = 5) and umbilical cord blood (n = 6) using high-dimensional mass cytometry. Identification of erythroid and myeloid blast populations in high-dimensional mass cytometry data enabled a refined view on erythroblast differentiation stages present in AEL erythroid blasts and revealed immunophenotypical profiles specific to AEL. Profiling of phenotypic LSCs revealed aberrant erythroid marker expression in the CD34+ CD38- stem cell compartment. In addition, the identification of novel candidate surface marker combinations and aberrancies might enhance clinical diagnostics of AEL. We present a high-parameter mass cytometry approach feasible for immunophenotypical analysis of blast and stem cell populations in myeloid neoplasms with erythroid predominance laying the foundation for more precise experimental approaches in the future.
Collapse
Affiliation(s)
- Abdul-Habib Maag
- Comprehensive Cancer Center, Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Helen Swanton
- Comprehensive Cancer Center, Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Miriam Kull
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Naidu M Vegi
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michaela Feuring
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
15
|
Pousse L, Korfi K, Medeiros BC, Berrera M, Kumpesa N, Eckmann J, Hutter IK, Griesser V, Karanikas V, Klein C, Amann M. CD25 targeting with the afucosylated human IgG1 antibody RG6292 eliminates regulatory T cells and CD25+ blasts in acute myeloid leukemia. Front Oncol 2023; 13:1150149. [PMID: 37205201 PMCID: PMC10185852 DOI: 10.3389/fonc.2023.1150149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Background Acute Myeloid leukemia is a heterogeneous disease that requires novel targeted treatment options tailored to the patients' specific microenvironment and blast phenotype. Methods We characterized bone marrow and/or blood samples of 37 AML patients and healthy donors by high dimensional flow cytometry and RNA sequencing using computational analysis. In addition, we performed ex vivo ADCC assays using allogeneic NK cells isolated from healthy donors and AML patient material to test the cytotoxic potential of CD25 Mab (also referred to as RG6292 and RO7296682) or isotype control antibody on regulatory T cells and CD25+ AML cells. Results Bone marrow composition, in particular the abundance of regulatory T cells and CD25 expressing AML cells, correlated strongly with that of the blood in patients with time-matched samples. In addition, we observed a strong enrichment in the prevalence of CD25 expressing AML cells in patients bearing a FLT3-ITD mutation or treated with a hypomethylating agent in combination with venetoclax. We adopted a patient-centric approach to study AML clusters with CD25 expression and found it most highly expressed on immature phenotypes. Ex vivo treatment of primary AML patient samples with CD25 Mab, a human CD25 specific glycoengineered IgG1 antibody led to the specific killing of two different cell types, CD25+ AML cells and regulatory T cells, by allogeneic Natural Killer cells. Conclusion The in-depth characterization of patient samples by proteomic and genomic analyses supported the identification of a patient population that may benefit most by harnessing CD25 Mab's dual mode of action. In this pre-selected patient population, CD25 Mab could lead to the specific depletion of regulatory T cells, in addition to leukemic stem cells and progenitor-like AML cells that are responsible for disease progression or relapse.
Collapse
Affiliation(s)
- Laurène Pousse
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich (RICZ), Schlieren, Switzerland
- *Correspondence: Laurène Pousse, ; Maria Amann,
| | - Koorosh Korfi
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich (RICZ), Schlieren, Switzerland
| | - Bruno C. Medeiros
- Genentech, Inc. Hematology Department, South San Francisco, CA, United States
| | - Marco Berrera
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel (RICB), Basel, Switzerland
| | - Nadine Kumpesa
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel (RICB), Basel, Switzerland
| | - Jan Eckmann
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Münich (RICM), Penzberg, Germany
| | - Idil Karakoc Hutter
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich (RICZ), Schlieren, Switzerland
| | - Vera Griesser
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel (RICB), Basel, Switzerland
| | - Vaios Karanikas
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich (RICZ), Schlieren, Switzerland
| | - Christian Klein
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich (RICZ), Schlieren, Switzerland
| | - Maria Amann
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich (RICZ), Schlieren, Switzerland
- *Correspondence: Laurène Pousse, ; Maria Amann,
| |
Collapse
|
16
|
Pacelli P, Raspadori D, Bestoso E, Gozzetti A, Bocchia M. "Friends and foes" of multiple myeloma measurable/minimal residual disease evaluation by next generation flow. Front Oncol 2022; 12:1057713. [PMID: 36518304 PMCID: PMC9742464 DOI: 10.3389/fonc.2022.1057713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Next Generation Flow (NGF) represents a gold standard for the evaluation of Minimal Residual Disease (MRD) in Multiple Myeloma (MM) patients at any stage of treatment. Although the assessment of MRD is still not universally employed in clinical practice, numerous studies have demonstrated the strength of MRD as a reliable predictor of long-term outcome, and its potential to supersede the prognostic value of CR. The possibility to acquire millions of events, in combination with the use of standard reagents and a good expertise in the analysis of rare populations, led to high chance of success and a sensitivity of 10-6 that is superimposable to the one of Next Generation Sequencing molecular techniques. Some minor bias, correlated to the protocols applied, to the quality of samples and to the high heterogeneity of plasma cells phenotype, may be overcome using standard protocols and having at disposition personnel expertise for MRD analysis. With the use of NGF we can today enter a new phase of the quantification of residual disease, switching from the definition of "minimal" residual disease to "measurable" residual disease. This review takes account of the principle "friends and foes" of Myeloma "Measurable" Residual Disease evaluation by NGF, to give insights into the potentiality of this technique. The optimization of the quality of BM samples and the analytic expertise that permits to discriminate properly the rare pathologic clones, are the keys for obtaining results with a high clinical value that could be of great impact and relevance in the future.
Collapse
Affiliation(s)
- Paola Pacelli
- Hematology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Elena Bestoso
- Hematology Unit, Siena University Hospital, Siena, Italy
| | - Alessandro Gozzetti
- Hematology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Hematology Unit, Siena University Hospital, Siena, Italy
| | - Monica Bocchia
- Hematology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Hematology Unit, Siena University Hospital, Siena, Italy
| |
Collapse
|
17
|
Tettero JM, Al-Badri WKW, Ngai LL, Bachas C, Breems DA, van Elssen CHMJ, Fischer T, Gjertsen BT, van Gorkom GNY, Gradowska P, Greuter MJE, Griskevicius L, Juliusson G, Maertens J, Manz MG, Pabst T, Passweg J, Porkka K, Löwenberg B, Ossenkoppele GJ, Janssen JJWM, Cloos J. Concordance in measurable residual disease result after first and second induction cycle in acute myeloid leukemia: An outcome- and cost-analysis. Front Oncol 2022; 12:999822. [PMID: 36300090 PMCID: PMC9589259 DOI: 10.3389/fonc.2022.999822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Measurable residual disease (MRD) measured using multiparameter flow-cytometry (MFC) has proven to be an important prognostic biomarker in acute myeloid leukemia (AML). In addition, MRD is increasingly used to guide consolidation treatment towards a non-allogenic stem cell transplantation treatment for MRD-negative patients in the ELN-2017 intermediate risk group. Currently, measurement of MFC-MRD in bone marrow is used for clinical decision making after 2 cycles of induction chemotherapy. However, measurement after 1 cycle has also been shown to have prognostic value, so the optimal time point remains a question of debate. We assessed the independent prognostic value of MRD results at either time point and concordance between these for 273 AML patients treated within and according to the HOVON-SAKK 92, 102, 103 and 132 trials. Cumulative incidence of relapse, event free survival and overall survival were significantly better for MRD-negative (<0.1%) patients compared to MRD-positive patients after cycle 1 and cycle 2 (p ≤ 0.002, for all comparisons). A total of 196 patients (71.8%) were MRD-negative after cycle 1, of which the vast majority remained negative after cycle 2 (180 patients; 91.8%). In contrast, of the 77 MRD-positive patients after cycle 1, only 41 patients (53.2%) remained positive. A cost reduction of –€571,751 per 100 patients could be achieved by initiating the donor search based on the MRD-result after cycle 1. This equals to a 50.7% cost reduction compared to the current care strategy in which the donor search is initiated for all patients. These results show that MRD after cycle 1 has prognostic value and is highly concordant with MRD status after cycle 2. When MRD-MFC is used to guide consolidation treatment (allo vs non-allo) in intermediate risk patients, allogeneic donor search may be postponed or omitted after cycle 1. Since the majority of MRD-negative patients remain negative after cycle 2, this could safely reduce the number of allogeneic donor searches and reduce costs.
Collapse
Affiliation(s)
- Jesse M. Tettero
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- *Correspondence: Jesse M. Tettero,
| | - Waleed K. W. Al-Badri
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lok Lam Ngai
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Dimitri A. Breems
- Department of Hematology, Ziekenhuis Netwerk Antwerpen, Antwerp, Belgium
| | - Catharina H. M. J. van Elssen
- Department of Internal Medicine, Division of Hematology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Thomas Fischer
- Department of Hematology and Oncology, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany
| | - Bjorn T. Gjertsen
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Gwendolyn N. Y. van Gorkom
- Department of Internal Medicine, Division of Hematology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Patrycja Gradowska
- The Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON) Data Center, Department of Hematology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | - Marjolein J. E. Greuter
- Department of Epidemiology and Data Science, Amsterdam Univerisity Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Laimonas Griskevicius
- Hematology, Oncology, Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos and Vilnius University, Vilnius, Lithuania
| | - Gunnar Juliusson
- Department of Hematology, Skanes University Hospital, Lund, Sweden
| | - Johan Maertens
- Department of Hematology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital, Zurich, Switzerland
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
| | - Thomas Pabst
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital, Bern, Switzerland
| | - Jakob Passweg
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
- Department of Hematology, University Hospital, Basel, Switzerland
| | - Kimmo Porkka
- Department of Hematology, Helsinki University Hospital Cancer Center, Helsinki, Finland
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center (MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Jeroen J. W. M. Janssen
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam Univerisity Medical Centers location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
18
|
Barreto IV, Pessoa FMCDP, Machado CB, Pantoja LDC, Ribeiro RM, Lopes GS, Amaral de Moraes ME, de Moraes Filho MO, de Souza LEB, Burbano RMR, Khayat AS, Moreira-Nunes CA. Leukemic Stem Cell: A Mini-Review on Clinical Perspectives. Front Oncol 2022; 12:931050. [PMID: 35814466 PMCID: PMC9270022 DOI: 10.3389/fonc.2022.931050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their ability to proliferate and self-renew, thus being responsible for sustaining the hematopoietic system and residing in the bone marrow (BM). Leukemic stem cells (LSCs) are recognized by their stemness features such as drug resistance, self-renewal, and undifferentiated state. LSCs are also present in BM, being found in only 0.1%, approximately. This makes their identification and even their differentiation difficult since, despite the mutations, they are cells that still have many similarities with HSCs. Although the common characteristics, LSCs are heterogeneous cells and have different phenotypic characteristics, genetic mutations, and metabolic alterations. This whole set of alterations enables the cell to initiate the process of carcinogenesis, in addition to conferring drug resistance and providing relapses. The study of LSCs has been evolving and its application can help patients, where through its count as a biomarker, it can indicate a prognostic factor and reveal treatment results. The selection of a target to LSC therapy is fundamental. Ideally, the target chosen should be highly expressed by LSCs, highly selective, absence of expression on other cells, in particular HSC, and preferentially expressed by high numbers of patients. In view of the large number of similarities between LSCs and HSCs, it is not surprising that current treatment approaches are limited. In this mini review we seek to describe the immunophenotypic characteristics and mechanisms of resistance presented by LSCs, also approaching possible alternatives for the treatment of patients.
Collapse
Affiliation(s)
- Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | | | | | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | | | | | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Ceará State University, Northeast Biotechnology Network (RENORBIO), Fortaleza, Brazil
- *Correspondence: Caroline Aquino Moreira-Nunes,
| |
Collapse
|
19
|
Vonk CM, Al Hinai ASA, Hanekamp D, Valk PJM. Molecular Minimal Residual Disease Detection in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:5431. [PMID: 34771594 PMCID: PMC8582498 DOI: 10.3390/cancers13215431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Initial induction chemotherapy to eradicate the bulk of acute myeloid leukemia (AML) cells results in complete remission (CR) in the majority of patients. However, leukemic cells persisting in the bone marrow below the morphologic threshold remain unaffected and have the potential to proliferate and re-emerge as AML relapse. Detection of minimal/measurable residual disease (MRD) is a promising prognostic marker for AML relapse as it can assess an individual patients' risk profile and evaluate their response to treatment. With the emergence of molecular techniques, such as next generation sequencing (NGS), a more sensitive assessment of molecular MRD markers is available. In recent years, the detection of MRD by molecular assays and its association with AML relapse and survival has been explored and verified in multiple studies. Although most studies show that the presence of MRD leads to a worse clinical outcome, molecular-based methods face several challenges including limited sensitivity/specificity, and a difficult distinction between mutations that are representative of AML rather than clonal hematopoiesis. This review describes the studies that have been performed using molecular-based assays for MRD detection in the context of other MRD detection approaches in AML, and discusses limitations, challenges and opportunities.
Collapse
Affiliation(s)
- Christian M Vonk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Adil S A Al Hinai
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
- National Genetic Center, Ministry of Health, Muscat 111, Oman
| | - Diana Hanekamp
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
- Department of Hematology, Cancer Center VU University Medical Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
20
|
Bernasconi P, Borsani O. Eradication of Measurable Residual Disease in AML: A Challenging Clinical Goal. Cancers (Basel) 2021; 13:3170. [PMID: 34202000 PMCID: PMC8268140 DOI: 10.3390/cancers13133170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/18/2022] Open
Abstract
In non-promyelocytic (non-M3) AML measurable residual disease (MRD) detected by multi-parameter flow cytometry and molecular technologies, which are guided by Consensus-based guidelines and discover very low leukemic cell numbers far below the 5% threshold of morphological assessment, has emerged as the most relevant predictor of clinical outcome. Currently, it is well-established that MRD positivity after standard induction and consolidation chemotherapy, as well as during the period preceding an allogeneic hematopoietic stem cell transplant (allo-HSCT), portends to a significantly inferior relapse-free survival (RFS) and overall survival (OS). In addition, it has become absolutely clear that conversion from an MRD-positive to an MRD-negative state provides a favorable clinical outcome similar to that associated with early MRD negativity. Thus, the complete eradication of MRD, i.e., the clearance of the few leukemic stem cells-which, due to their chemo-radiotherapy resistance, might eventually be responsible of disease recurrence-has become an un-met clinical need in AML. Nowadays, this goal might potentially be achieved thanks to the development of novel innovative treatment strategies, including those targeting driver mutations, apoptosis, methylation patterns and leukemic proteins. The aim of this review is to analyze these strategies and to suggest any potential combination able to induce MRD negativity in the pre- and post-HSCT period.
Collapse
Affiliation(s)
- Paolo Bernasconi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Oscar Borsani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
21
|
Hanekamp D, Tettero JM, Ossenkoppele GJ, Kelder A, Cloos J, Schuurhuis GJ. AML/Normal Progenitor Balance Instead of Total Tumor Load (MRD) Accounts for Prognostic Impact of Flowcytometric Residual Disease in AML. Cancers (Basel) 2021; 13:2597. [PMID: 34073205 PMCID: PMC8198261 DOI: 10.3390/cancers13112597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Measurable residual disease (MRD) in AML, assessed by multicolor flow cytometry, is an important prognostic factor. Progenitors are key populations in defining MRD, and cases of MRD involving these progenitors are calculated as percentage of WBC and referred to as white blood cell MRD (WBC-MRD). Two main compartments of WBC-MRD can be defined: (1) the AML part of the total primitive/progenitor (CD34+, CD117+, CD133+) compartment (referred to as primitive marker MRD; PM-MRD) and (2) the total progenitor compartment (% of WBC, referred to as PM%), which is the main quantitative determinant of WBC-MRD. Both are related as follows: WBC-MRD = PM-MRD × PM%. We explored the relative contribution of each parameter to the prognostic impact. In the HOVON/SAKK study H102 (300 patients), based on two objectively assessed cut-off points (2.34% and 10%), PM-MRD was found to offer an independent prognostic parameter that was able to identify three patient groups with different prognoses with larger discriminative power than WBC-MRD. In line with this, the PM% parameter itself showed no prognostic impact, implying that the prognostic impact of WBC-MRD results from the PM-MRD parameter it contains. Moreover, the presence of the PM% parameter in WBC-MRD may cause WBC-MRD false positivity and WBC-MRD false negativity. For the latter, at present, it is clinically relevant that PM-MRD ≥ 10% identifies a patient sub-group with a poor prognosis that is currently classified as good prognosis MRDnegative using the European LeukemiaNet 0.1% consensus MRD cut-off value. These observations suggest that residual disease analysis using PM-MRD should be conducted.
Collapse
Affiliation(s)
- Diana Hanekamp
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
- Department of Hematology, Erasmus MC, NL-3000 CA Rotterdam, The Netherlands
| | - Jesse M. Tettero
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Gert J. Ossenkoppele
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Angèle Kelder
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| | - Gerrit Jan Schuurhuis
- Department of Hematology, Amsterdam University Medical Centers, Cancer Center VU University Medical Center, 1081 HV Amsterdam, The Netherlands; (D.H.); (J.M.T.); (G.J.O.); (A.K.); (J.C.)
| |
Collapse
|
22
|
Ngai LL, Kelder A, Janssen JJWM, Ossenkoppele GJ, Cloos J. MRD Tailored Therapy in AML: What We Have Learned So Far. Front Oncol 2021; 10:603636. [PMID: 33575214 PMCID: PMC7871983 DOI: 10.3389/fonc.2020.603636] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal disease associated with a dismal survival, partly due to the frequent occurrence of relapse. Many patient- and leukemia-specific characteristics, such as age, cytogenetics, mutations, and measurable residual disease (MRD) after intensive chemotherapy, have shown to be valuable prognostic factors. MRD has become a rich field of research where many advances have been made regarding technical, biological, and clinical aspects, which will be the topic of this review. Since many laboratories involved in AML diagnostics have experience in immunophenotyping, multiparameter flow cytometry (MFC) based MRD is currently the most commonly used method. Although molecular, quantitative PCR based techniques may be more sensitive, their disadvantage is that they can only be applied in a subset of patients harboring the genetic aberration. Next-generation sequencing can assess and quantify mutations in many genes but currently does not offer highly sensitive MRD measurements on a routine basis. In order to provide reliable MRD results, MRD assay optimization and standardization is essential. Different techniques for MRD assessment are being evaluated, and combinations of the methods have shown promising results for improving its prognostic value. In this regard, the load of leukemic stem cells (LSC) has also been shown to add to the prognostic value of MFC-MRD. At this moment, MRD after intensive chemotherapy is most often used as a prognostic factor to help stratify patients, but also to select the most appropriate consolidation therapy. For example, to guide post-remission treatment for intermediate-risk patients where MRD positive patients receive allogeneic stem cell transplantation and MRD negative receive autologous stem cell transplantation. Other upcoming uses of MRD that are being investigated include: selecting the type of allogeneic stem cell transplantation therapy (donor, conditioning), monitoring after stem cell transplantation (to allow intervention), and determining drug efficacy for the use of a surrogate endpoint in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
23
|
Arnone M, Konantz M, Hanns P, Paczulla Stanger AM, Bertels S, Godavarthy PS, Christopeit M, Lengerke C. Acute Myeloid Leukemia Stem Cells: The Challenges of Phenotypic Heterogeneity. Cancers (Basel) 2020; 12:E3742. [PMID: 33322769 PMCID: PMC7764578 DOI: 10.3390/cancers12123742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
Patients suffering from acute myeloid leukemia (AML) show highly heterogeneous clinical outcomes. Next to variabilities in patient-specific parameters influencing treatment decisions and outcome, this is due to differences in AML biology. In fact, different genetic drivers may transform variable cells of origin and co-exist with additional genetic lesions (e.g., as observed in clonal hematopoiesis) in a variety of leukemic (sub)clones. Moreover, AML cells are hierarchically organized and contain subpopulations of more immature cells called leukemic stem cells (LSC), which on the cellular level constitute the driver of the disease and may evolve during therapy. This genetic and hierarchical complexity results in a pronounced phenotypic variability, which is observed among AML cells of different patients as well as among the leukemic blasts of individual patients, at diagnosis and during the course of the disease. Here, we review the current knowledge on the heterogeneous landscape of AML surface markers with particular focus on those identifying LSC, and discuss why identification and targeting of this important cellular subpopulation in AML remains challenging.
Collapse
Affiliation(s)
- Marlon Arnone
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
| | - Pauline Hanns
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
| | - Anna M. Paczulla Stanger
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Sarah Bertels
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Parimala Sonika Godavarthy
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Maximilian Christopeit
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| |
Collapse
|
24
|
Hernandez-Valladares M, Bruserud Ø, Selheim F. The Implementation of Mass Spectrometry-Based Proteomics Workflows in Clinical Routines of Acute Myeloid Leukemia: Applicability and Perspectives. Int J Mol Sci 2020; 21:ijms21186830. [PMID: 32957646 PMCID: PMC7556012 DOI: 10.3390/ijms21186830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
With the current reproducibility of proteome preparation workflows along with the speed and sensitivity of the mass spectrometers, the transition of the mass spectrometry (MS)-based proteomics technology from biomarker discovery to clinical implementation is under appraisal in the biomedicine community. Therefore, this technology might be implemented soon to detect well-known biomarkers in cancers and other diseases. Acute myeloid leukemia (AML) is an aggressive heterogeneous malignancy that requires intensive treatment to cure the patient. Leukemia relapse is still a major challenge even for patients who have favorable genetic abnormalities. MS-based proteomics could be of great help to both describe the proteome changes of individual patients and identify biomarkers that might encourage specific treatments or clinical strategies. Herein, we will review the advances and availability of the MS-based proteomics strategies that could already be used in clinical proteomics. However, the heterogeneity of complex diseases as AML requires consensus to recognize AML biomarkers and to establish MS-based workflows that allow their unbiased identification and quantification. Although our literature review appears promising towards the utilization of MS-based proteomics in clinical AML in a near future, major efforts are required to validate AML biomarkers and agree on clinically approved workflows.
Collapse
MESH Headings
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Computational Biology
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Mass Spectrometry/methods
- Prognosis
- Proteome/analysis
- Proteome/metabolism
- Proteomics/methods
- Robotics/instrumentation
- Robotics/methods
- Workflow
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| |
Collapse
|
25
|
Dix C, Lo TH, Clark G, Abadir E. Measurable Residual Disease in Acute Myeloid Leukemia Using Flow Cytometry: A Review of Where We Are and Where We Are Going. J Clin Med 2020; 9:E1714. [PMID: 32503122 PMCID: PMC7357042 DOI: 10.3390/jcm9061714] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The detection of measurable residual disease (MRD) has become a key investigation that plays a role in the prognostication and management of several hematologic malignancies. Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the role of MRD in AML is still emerging. Prognostic markers are complex, largely based upon genetic and cytogenetic aberrations. MRD is now being incorporated into prognostic models and is a powerful predictor of relapse. While PCR-based MRD methods are sensitive and specific, many patients do not have an identifiable molecular marker. Immunophenotypic MRD methods using multiparametric flow cytometry (MFC) are widely applicable, and are based on the identification of surface marker combinations that are present on leukemic cells but not normal hematopoietic cells. Current techniques include a "different from normal" and/or a "leukemia-associated immunophenotype" approach. Limitations of MFC-based MRD analyses include the lack of standardization, the reliance on a high-quality marrow aspirate, and variable sensitivity. Emerging techniques that look to improve the detection of leukemic cells use dimensional reduction analysis, incorporating more leukemia specific markers and identifying leukemic stem cells. This review will discuss current methods together with new and emerging techniques to determine the role of MFC MRD analysis.
Collapse
Affiliation(s)
- Caroline Dix
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Tsun-Ho Lo
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW 2139, Australia; (T.-H.L.); (G.C.)
- Immunology, Sydpath, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Georgina Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW 2139, Australia; (T.-H.L.); (G.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2039, Australia
| | - Edward Abadir
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW 2139, Australia; (T.-H.L.); (G.C.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2039, Australia
| |
Collapse
|