1
|
Yang D, Xu G, Ding H, Zhong L, Zhu J, Mi X, Xin W, Zhou T, Wang J, Fang L. Population pharmacokinetic and exposure-toxicity analyses of nab-paclitaxel after pegylated recombinant human granulocyte colony-stimulating factor administration in patients with metastatic breast cancer. Cancer Chemother Pharmacol 2024; 94:523-534. [PMID: 39080018 DOI: 10.1007/s00280-024-04702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/12/2024] [Indexed: 09/29/2024]
Abstract
PURPOSE This study aimed to establish a population pharmacokinetic (PK) model to evaluate the dynamic relationship between the concentrations of total and unbound paclitaxel, and the exposure-response analysis of albumin-bound paclitaxel (nab-paclitaxel) after pegylated recombinant human granulocyte colony-stimulating factor (PEG-G-CSF) administration in patients with metastatic breast cancer. METHODS A total of 653 concentrations corresponding to total paclitaxel and 334 concentrations corresponding to unbound paclitaxel were analyzed in 24 subjects who randomized received a single 260 mg/m2 dose of two nab-paclitaxel formulations with a 21-35-day washout period. PEG-G-CSF was administered to all the patients in each cycle to prevent neutropenia. The exposure-response relationships were evaluated using the exposure to total, albumin-coated, and unbound paclitaxel, as well as the reduction in neutrophil count. The exposure data were analyzed using nonlinear mixed-effect modeling. A linear regression model was used to test the statistical significance of the correlation between percentage of reduction in neutrophil count and exposure. RESULTS The PK characteristics of total paclitaxel were described using a three-compartment model with first-order elimination, and a mechanism-based model incorporating linear release of nab-paclitaxel and the saturated binding of unbound paclitaxel to plasma components was established. The release ratio of paclitaxel from nab-paclitaxel was estimated to be 4.60% and the maximum unbound fraction (2.76%) was reached at the end of the infusion. The study found that a longer duration of total paclitaxel concentration > 0.19 µmol/L was significantly correlated with a reduction in neutrophil count (r2 = 0.23, P = 0.00062). Specifically, a duration of > 8.6 h was a predictor of a decreased neutrophil count. CONCLUSION The decrease in neutrophils induced by nab-paclitaxel was significantly correlated with the duration above a total paclitaxel concentration of 0.19 µmol/L despite the use of PEG-G-CSF.
Collapse
Affiliation(s)
- Dihong Yang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 1 East Banshan Road, Hangzhou, Zhejiang, 310022, China
| | - Gaoqi Xu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 1 East Banshan Road, Hangzhou, Zhejiang, 310022, China
| | - Haiying Ding
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 1 East Banshan Road, Hangzhou, Zhejiang, 310022, China
| | - Like Zhong
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 1 East Banshan Road, Hangzhou, Zhejiang, 310022, China
| | - Junfeng Zhu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 1 East Banshan Road, Hangzhou, Zhejiang, 310022, China
| | - Xiufang Mi
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 1 East Banshan Road, Hangzhou, Zhejiang, 310022, China
| | - Wenxiu Xin
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 1 East Banshan Road, Hangzhou, Zhejiang, 310022, China
| | - Tianyan Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiaqi Wang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 1 East Banshan Road, Hangzhou, Zhejiang, 310022, China.
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 1 East Banshan Road, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
2
|
Pascual-Pasto G, Resa-Pares C, Castillo-Ecija H, Aschero R, Baulenas-Farres M, Vila-Ubach M, Burgueño V, Balaguer-Lluna L, Cuadrado-Vilanova M, Olaciregui NG, Martinez-Velasco N, Perez-Jaume S, de Alava E, Tirado OM, Lavarino C, Mora J, Carcaboso AM. Low Bcl-2 is a robust biomarker of sensitivity to nab-paclitaxel in Ewing sarcoma. Biochem Pharmacol 2023; 208:115408. [PMID: 36603685 DOI: 10.1016/j.bcp.2022.115408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) shows potent preclinical anticancer activity in pediatric solid tumors such as Ewing sarcoma, rhabdomyosarcoma and neuroblastoma, but responses in clinical trials have been modest. In this work, we aimed to discover a rational biomarker-based approach to select the right candidate patients for this treatment. We assessed the efficacy of nab-paclitaxel in 27 patient-derived xenografts (PDX), including 14 Ewing sarcomas, five rhabdomyosarcomas and several other pediatric solid tumors. Response rate (partial or complete response) was remarkable in rhabdomyosarcomas (four of five) and Ewing sarcomas (four of 14). We addressed several predictive factors of response to nab-paclitaxel such as the expression of the secreted protein acidic and rich in cysteine (SPARC), chromosomal stability of cancer cells and expression of antiapoptotic members of the B-cell lymphoma-2 (Bcl-2) family of proteins such as Bcl-2, Bcl-xL, Bcl-W and Mcl-1. Protein (immunoblotting) and gene expression of SPARC correlated positively, while immunoblotting and immunohistochemistry expression of Bcl-2 correlated negatively with the efficacy of nab-paclitaxel in Ewing sarcoma PDX. The negative correlation of Bcl-2 immunoblotting signal and activity was especially robust (r = 0.8352; P = 0.0007; Pearson correlation). Consequently, we evaluated pharmacological strategies to inhibit Bcl-2 during nab-paclitaxel treatment. We observed that the Bcl-2 inhibitor venetoclax improved the activity of nab-paclitaxel in highly resistant Bcl-2-expressing Ewing sarcoma PDX. Overall, our results suggest that low Bcl-2 expression could be used to select patients with Ewing sarcoma sensitive to nab-paclitaxel, and Bcl-2 inhibitors could improve the activity of this drug in Bcl-2-expressing Ewing sarcoma.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Claudia Resa-Pares
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Helena Castillo-Ecija
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Rosario Aschero
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Merce Baulenas-Farres
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Monica Vila-Ubach
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Victor Burgueño
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Leire Balaguer-Lluna
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Maria Cuadrado-Vilanova
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Nagore G Olaciregui
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Nuria Martinez-Velasco
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Sara Perez-Jaume
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Enrique de Alava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital /CSIC/University of Sevilla/CIBERONC, 41013 Seville, Spain; Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Oscar M Tirado
- Sarcoma Research Group, Oncobell Program, Institut d'Investigació Biomédica de Bellvitge (IDIBELL)/CIBERONC, Barcelona, Spain
| | - Cinzia Lavarino
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Jaume Mora
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Angel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain.
| |
Collapse
|