1
|
Sasmal DK, Pulido LE, Kasal S, Huang J. Single-molecule fluorescence resonance energy transfer in molecular biology. NANOSCALE 2016; 8:19928-19944. [PMID: 27883140 PMCID: PMC5145784 DOI: 10.1039/c6nr06794h] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the conformation dynamics and interactions of individual biomolecules. In this review, we describe the concept and principle of smFRET, illustrate general instrumentation and microscopy settings for experiments, and discuss the methods and algorithms for data analysis. Subsequently, we review applications of smFRET in protein conformational changes, ion channel open-close properties, receptor-ligand interactions, nucleic acid structure regulation, vesicle fusion, and force induced conformational dynamics. Finally, we discuss the main limitations of smFRET in molecular biology.
Collapse
Affiliation(s)
- Dibyendu K Sasmal
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Laura E Pulido
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Shan Kasal
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Jun Huang
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Yang Y, Goetzfried MA, Hidaka K, You M, Tan W, Sugiyama H, Endo M. Direct Visualization of Walking Motions of Photocontrolled Nanomachine on the DNA Nanostructure. NANO LETTERS 2015; 15:6672-6. [PMID: 26302358 PMCID: PMC5507700 DOI: 10.1021/acs.nanolett.5b02502] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A light-driven artificial molecular nanomachine was constructed based on DNA scaffolding. Pyrene-modified walking strands and disulfide bond-connected stator strands, employed as anchorage sites to support walker movement, were assembled into a 2D DNA tile. Pyrene molecules excited by photoirradiation at 350 nm induced cleavage of disulfide bond-connected stator strands, enabling the DNA walker to migrate from one cleaved stator to the next on the DNA tile. The time-dependent movement of the walker was observed and the entire walking process of the walker was characterized by distribution of the walker-stator duplex at four anchorage sites on the tile under different irradiation times. Importantly, the light-fuelled mechanical movements on DNA tile were first visualized in real time during UV irradiation using high-speed atomic force microscopy (HS-AFM).
Collapse
Affiliation(s)
- Yangyang Yang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Marisa A. Goetzfried
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mingxu You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, Hunan 410082, China
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
te Riet J, Katan AJ, Rankl C, Stahl SW, van Buul AM, Phang IY, Gomez-Casado A, Schön P, Gerritsen JW, Cambi A, Rowan AE, Vancso GJ, Jonkheijm P, Huskens J, Oosterkamp TH, Gaub H, Hinterdorfer P, Figdor CG, Speller S. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy. Ultramicroscopy 2011; 111:1659-69. [DOI: 10.1016/j.ultramic.2011.09.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 01/30/2023]
|
4
|
|
5
|
Fujii S, Kobayashi K, Kanaizuka K, Okamoto T, Toyabe S, Muneyuki E, Haga MA. Observation of DNA pinning at laser focal point on Au surface and its application to single DNA nanowire and cross-wire formation. Bioelectrochemistry 2010; 80:26-30. [DOI: 10.1016/j.bioelechem.2010.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Affiliation(s)
- Sho Fujii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Lupton JM. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:1689-721. [PMID: 20496402 DOI: 10.1002/adma.200902306] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.
Collapse
Affiliation(s)
- John M Lupton
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
Abstract
In the last decade optical manipulation has evolved from a field of interest for physicists to a versatile tool widely used within life sciences. This has been made possible in particular due to the development of a large variety of imaging techniques that allow detailed information to be gained from investigations of single cells. The use of multiple optical traps has high potential within single-cell analysis since parallel measurements provide good statistics. Multifunctional optical tweezers are, for instance, used to study cell heterogeneity in an ensemble, and force measurements are used to investigate the mechanical properties of individual cells. Investigations of molecular motors and forces on the single-molecule level have led to discoveries that would have been difficult to make with other techniques. Optical manipulation has prospects within the field of cell signalling and tissue engineering. When combined with microfluidic systems the chemical environment of cells can be precisely controlled. Hence the influence of pH, salt concentration, drugs and temperature can be investigated in real time. Fast advancing technical developments of automated and user-friendly optical manipulation tools and cross-disciplinary collaboration will contribute to the routinely use of optical manipulation techniques within the life sciences.
Collapse
Affiliation(s)
- Kerstin Ramser
- Department of Computer Science and Electrical Engineering, Luleå University of Technology, Luleå, Sweden
| | | |
Collapse
|
8
|
Wang X, Lu HP. 2D regional correlation analysis of single-molecule time trajectories. J Phys Chem B 2009; 112:14920-6. [PMID: 18950223 DOI: 10.1021/jp804453j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anticorrelated fluctuations under a noncorrelated noise background. Using this new method, by changing and scanning the start time and end time along a pair of fluctuation trajectories, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anticorrelated, or noncorrelated; after which, a cross-correlation analysis can be applied for each specific segment to obtain a detailed fluctuation dynamics analysis. We specifically discuss an application of this approach to analyze single-molecule fluorescence resonance energy transfer (FRET) fluctuation dynamics where the fluctuations are often complex, although this approach can be useful for analyzing other types of fluctuation dynamics of various physical variables as well.
Collapse
Affiliation(s)
- Xuefei Wang
- Bowling Green State University, Center for Photochemical Sciences, Department of Chemistry, Bowling Green, Ohio 43403, USA
| | | |
Collapse
|
9
|
Grigaravicius P, Greulich KO, Monajembashi S. Laser microbeams and optical tweezers in ageing research. Chemphyschem 2009; 10:79-85. [PMID: 19090523 DOI: 10.1002/cphc.200800725] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We show how a technique developed within the framework of physics and physical chemistry-in a true interdisciplinary approach-can answer questions in life sciences that are not solvable by using other techniques. Herein, we focus on blood-pressure regulation and DNA repair in ageing studies. Laser microbeams and optical tweezers are now established tools in many fields of science, particularly in the life sciences. A short glimpse is given on the wide field of non-age-research applications in life sciences. Then, optical tweezers are used to show that exerting a vertical pressure on cells representing the inner lining of blood vessels results in bursts of NO liberation concomitant with large changes in cell morphology. Repeated treatment of such human umbilical vein endothelial cells (HUVEC) results in stiffening, a hallmark of manifest high blood pressure, a disease primarily of the elderly. As a second application in ageing research, a laser microbeam is used to induce, with high spatial and temporal resolution, DNA damages in the nuclei of U2OS human osteosarcoma cells. A pairwise study of the recruitment kinetics of different DNA repair proteins reveals that DNA repair starts with non-homologous end joining (NHEJ), a repair pathway, and may only after several minutes switch to the error-free homologous recombination repair (HRR) pathway. Since DNA damages-when incorrectly repaired-accumulate with time, laser microbeams are becoming well-used tools in ageing research.
Collapse
|
10
|
Wang K, Tang Z, Yang C, Kim Y, Fang X, Li W, Wu Y, Medley C, Cao Z, Li J, Colon P, Lin H, Tan W. Molekulartechnische DNA-Modifizierung: Molecular Beacons. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200800370] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W. Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed Engl 2009; 48:856-70. [PMID: 19065690 PMCID: PMC2772660 DOI: 10.1002/anie.200800370] [Citation(s) in RCA: 492] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular beacons (MBs) are specifically designed DNA hairpin structures that are widely used as fluorescent probes. Applications of MBs range from genetic screening, biosensor development, biochip construction, and the detection of single-nucleotide polymorphisms to mRNA monitoring in living cells. The inherent signal-transduction mechanism of MBs enables the analysis of target oligonucleotides without the separation of unbound probes. The MB stem-loop structure holds the fluorescence-donor and fluorescence-acceptor moieties in close proximity to one another, which results in resonant energy transfer. A spontaneous conformation change occurs upon hybridization to separate the two moieties and restore the fluorescence of the donor. Recent research has focused on the improvement of probe composition, intracellular gene quantitation, protein-DNA interaction studies, and protein recognition.
Collapse
Affiliation(s)
- Kemin Wang
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
- Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (P.R. China)
| | - Zhiwen Tang
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Chaoyong James Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (P.R. China)
| | - Youngmi Kim
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Xiaohong Fang
- Institute of Chemistry, Chinese Academy of Sciences 2 Zhongguancun Beiyijie, Beijing 100190 (P.R. China)
| | - Wei Li
- Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (P.R. China)
| | - Yanrong Wu
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Colin D. Medley
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Zehui Cao
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Jun Li
- Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (P.R. China)
| | - Patrick Colon
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Hui Lin
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
| | - Weihong Tan
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Genetics Institute and Shands Cancer Center, University of Florida, Gainesville, FL 32611-7200 (USA), Fax: (+1) 352-846-2410
- Biomedical Engineering Center, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (P.R. China)
| |
Collapse
|
12
|
Finkelstein IJ, Greene EC. Single molecule studies of homologous recombination. MOLECULAR BIOSYSTEMS 2008; 4:1094-104. [PMID: 18931785 DOI: 10.1039/b811681b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Single molecule methods offer an unprecedented opportunity to examine complex macromolecular reactions that are obfuscated by ensemble averaging. The application of single molecule techniques to study DNA processing enzymes has revealed new mechanistic details that are unobtainable from bulk biochemical studies. Homologous DNA recombination is a multi-step pathway that is facilitated by numerous enzymes that must precisely and rapidly manipulate diverse DNA substrates to repair potentially lethal breaks in the DNA duplex. In this review, we present an overview of single molecule assays that have been developed to study key aspects of homologous recombination and discuss the unique information gleaned from these experiments.
Collapse
Affiliation(s)
- Ilya J Finkelstein
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
13
|
Goel A, Vogel V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. NATURE NANOTECHNOLOGY 2008; 3:465-475. [PMID: 18685633 DOI: 10.1038/nnano.2008.190] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Living systems use biological nanomotors to build life's essential molecules--such as DNA and proteins--as well as to transport cargo inside cells with both spatial and temporal precision. Each motor is highly specialized and carries out a distinct function within the cell. Some have even evolved sophisticated mechanisms to ensure quality control during nanomanufacturing processes, whether to correct errors in biosynthesis or to detect and permit the repair of damaged transport highways. In general, these nanomotors consume chemical energy in order to undergo a series of shape changes that let them interact sequentially with other molecules. Here we review some of the many tasks that biomotors perform and analyse their underlying design principles from an engineering perspective. We also discuss experiments and strategies to integrate biomotors into synthetic environments for applications such as sensing, transport and assembly.
Collapse
Affiliation(s)
- Anita Goel
- Nanobiosym Labs, 200 Boston Avenue, Suite 4700, Medford, Massachusetts 02155, USA.
| | | |
Collapse
|
14
|
Chai D. RNA structure and modeling: progress and techniques. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2008; 82:71-100. [PMID: 18929139 DOI: 10.1016/s0079-6603(08)00003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dinggeng Chai
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Astier Y, Kainov DE, Bayley H, Tuma R, Howorka S. Stochastic detection of motor protein-RNA complexes by single-channel current recording. Chemphyschem 2007; 8:2189-94. [PMID: 17886244 DOI: 10.1002/cphc.200700179] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A label- and immobilization-free approach to detecting the reversible formation of complexes between nucleic acids and proteins at the single-molecule level is described. The voltage-driven translocation of individual oligoribonucleotides through a nanoscale protein pore is observed by single-channel current recordings. The oligoribonucleotide 5'-C25A(25)-3' gives rise to current blockades with an average duration of approximately 0.5 ms. In the presence of the RNA-binding ATPase P4, a viral packaging motor from bacteriophage phi8, longer events of tens to hundreds of milliseconds are observed. Upon addition of ATP the long events disappear, indicating the dissociation of the P4RNA complex. The frequency of events also depends on the concentration of P4 and the length of the oligoribonucleotide, thereby confirming the specificity of the P4RNA events. This study shows that single-channel current recordings can be used to monitor RNA-protein complex formation, thus opening up a new means to examine the motor activity of RNA- or DNA-processing enzymes.
Collapse
Affiliation(s)
- Yann Astier
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, UK
| | | | | | | | | |
Collapse
|
16
|
Burnham DR, Wright GD, Read ND, McGloin D. Holographic and single beam optical manipulation of hyphal growth in filamentous fungi. ACTA ACUST UNITED AC 2007. [DOI: 10.1088/1464-4258/9/8/s09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Technologies for the Global Discovery and Analysis of Alternative Splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:64-84. [DOI: 10.1007/978-0-387-77374-2_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
18
|
Lin DC, Dimitriadis EK, Horkay F. Robust Strategies for Automated AFM Force Curve Analysis—I. Non-adhesive Indentation of Soft, Inhomogeneous Materials. J Biomech Eng 2006; 129:430-40. [PMID: 17536911 DOI: 10.1115/1.2720924] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The atomic force microscope (AFM) has found wide applicability as a nanoindentation tool to measure local elastic properties of soft materials. An automated approach to the processing of AFM indentation data, namely, the extraction of Young’s modulus, is essential to realizing the high-throughput potential of the instrument as an elasticity probe for typical soft materials that exhibit inhomogeneity at microscopic scales. This paper focuses on Hertzian analysis techniques, which are applicable to linear elastic indentation. We compiled a series of synergistic strategies into an algorithm that overcomes many of the complications that have previously impeded efforts to automate the fitting of contact mechanics models to indentation data. AFM raster data sets containing up to 1024 individual force-displacement curves and macroscopic compression data were obtained from testing polyvinyl alcohol gels of known composition. Local elastic properties of tissue-engineered cartilage were also measured by the AFM. All AFM data sets were processed using customized software based on the algorithm, and the extracted values of Young’s modulus were compared to those obtained by macroscopic testing. Accuracy of the technique was verified by the good agreement between values of Young’s modulus obtained by AFM and by direct compression of the synthetic gels. Validation of robustness was achieved by successfully fitting the vastly different types of force curves generated from the indentation of tissue-engineered cartilage. For AFM indentation data that are amenable to Hertzian analysis, the method presented here minimizes subjectivity in preprocessing and allows for improved consistency and minimized user intervention. Automated, large-scale analysis of indentation data holds tremendous potential in bioengineering applications, such as high-resolution elasticity mapping of natural and artificial tissues.
Collapse
Affiliation(s)
- David C Lin
- Laboratory of Integrative and Medical Biophysics, National Institutes of Health, 9 Memorial Drive, Bldg. 9 Rm. 1E118, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
19
|
Wright GD, Arlt J, Poon WCK, Read ND. Optical tweezer micromanipulation of filamentous fungi. Fungal Genet Biol 2006; 44:1-13. [PMID: 16908207 DOI: 10.1016/j.fgb.2006.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/03/2006] [Accepted: 07/05/2006] [Indexed: 11/21/2022]
Abstract
Optical tweezers have been little used in experimental studies on filamentous fungi. We have built a simple, compact, easy-to-use, safe and robust optical tweezer system that can be used with brightfield, phase contrast, differential interference contrast and fluorescence optics on a standard research grade light microscope. We have used this optical tweezer system in a range of cell biology applications to trap and micromanipulate whole fungal cells, organelles within cells, and beads. We have demonstrated how optical tweezers can be used to: unambiguously determine whether hyphae are actively homing towards each other; move the Spitzenkörper and change the pattern of hyphal morphogenesis; make piconewton force measurements; mechanically stimulate hyphal tips; and deliver chemicals to localized regions of hyphae. Significant novel experimental findings from our study were that germ tubes generated significantly smaller growth forces than leading hyphae, and that both hyphal types exhibited growth responses to mechanical stimulation with optically trapped polystyrene beads. Germinated spores that had been optically trapped for 25min exhibited no deleterious effects with regard to conidial anastomosis tube growth, homing or fusion.
Collapse
Affiliation(s)
- Graham D Wright
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Rutherford Building, Edinburgh, UK
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- R Derike Smiley
- Department of Biochemistry, Box 3711, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|