1
|
Kobayashi R, Narita J, Nakaoka N, Krafft MP, Koyama D. Quantitative estimation of phospholipid molecules desorbed from a microbubble surface under ultrasound irradiation. Sci Rep 2023; 13:13693. [PMID: 37608058 PMCID: PMC10444774 DOI: 10.1038/s41598-023-40823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023] Open
Abstract
Microbubbles have potential applications as drug and gene carriers, and drug release can be triggered by externally applied ultrasound irradiation while inside blood vessels. Desorption of molecules forming the microbubble shell can be observed under ultrasound irradiation of a single isolated microbubble, and the volume of desorbed molecules can be quantitatively estimated from the contact angle between the bubble and a glass plate. Microbubbles composed of a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) shell and a poorly-soluble gas are created. When the microbubbles are exposed to a pulsed ultrasound, the contact angles increase dramatically; the percentage of DMPC molecules desorbed from the bubble surface reaches 70%. Vibration of a single bubble in the radial direction is measured using a laser Doppler vibrometer. The relationship between the vibrational characteristics and the amount of molecular desorption reveals that a larger vibrational amplitude of the bubble around the resonance size induces a larger amount of molecular desorption. These results support the possibility of controlling molecular desorption with pulsed ultrasound.
Collapse
Affiliation(s)
- Reina Kobayashi
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Jun Narita
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Natsumi Nakaoka
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034, Strasbourg, France
| | - Daisuke Koyama
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan.
| |
Collapse
|
2
|
Zahiri M, Taghavi S, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Theranostic nanobubbles towards smart nanomedicines. J Control Release 2021; 339:164-194. [PMID: 34592384 DOI: 10.1016/j.jconrel.2021.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023]
Abstract
Targeted therapy and early accurate detection of malignant lesions are essential for the effectiveness of treatment and prognosis in cancer patients. The development of gaseous system as a versatile platform for the fabricated nanobubbles, has attracted much interest in improving the efficacy of ultrasound therapeutic, diagnostic, and theranostic platforms. Nano-sized bubble, as an ultrasound contrast agent, with spherical gas-filled structures exhibited contrast enhancement capability due to their inherent EPR effect. Additionally, nanobubbles exhibited good stability with extended retention time in the blood stream. The current review summarized various nanobubbles and discussed about the crucial parameters affecting the stability of ultrafine bubbles. Furthermore, therapeutic and theranostic gaseous systems for fighting against cancer were described.
Collapse
Affiliation(s)
- Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Peng S, Song R, Lin Q, Zhang Y, Yang Y, Luo M, Zhong Z, Xu X, Lu L, Yao S, Zhang F. A Robust Oxygen Microbubble Radiosensitizer for Iodine-125 Brachytherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002567. [PMID: 33854878 PMCID: PMC8025033 DOI: 10.1002/advs.202002567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/15/2020] [Indexed: 05/04/2023]
Abstract
Iodine-125 (125I) brachytherapy, a promising form of radiotherapy, is increasingly applied in the clinical treatment of a wide range of solid tumors. However, the extremely hypoxic microenvironment in solid tumors can cause hypoxia-induced radioresistance to 125I brachytherapy, resulting in therapeutic inefficacy. In this study, the aim is to sensitize hypoxic areas in solid tumors using ultrasound-activated oxygen microbubbles for 125I brachytherapy. A modified emulsion freeze-drying method is developed to prepare microbubbles that can be lyophilized for storage and easily reconstituted in situ before administration. The filling gas of the microbubbles is modified by the addition of sulfur hexafluoride to oxygen such that the obtained O2/SF6 microbubbles (OS MBs) achieve a much longer half-life (>3×) than that of oxygen microbubbles. The OS MBs are tested in nasopharyngeal carcinoma (CNE2) tumor-bearing mice and oxygen delivery by the OS MBs induced by ultrasound irradiation relieve hypoxia instantly. The post-treatment results of brachytherapy combined with the ultrasound-triggered OS MBs show a greatly improved therapeutic efficacy compared with brachytherapy alone, illustrating ultrasound-mediated oxygen delivery with the developed OS MBs as a promising strategy to improve the therapeutic outcome of 125I brachytherapy in hypoxic tumors.
Collapse
Affiliation(s)
- Sheng Peng
- Department of UltrasoundSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060P. R. China
| | - Ruyuan Song
- Bioengineering Graduate ProgramDepartment of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyHong Kong999077P. R. China
| | - Qingguang Lin
- Department of UltrasoundSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060P. R. China
| | - Yanling Zhang
- Department of Imaging and Interventional RadiologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060P. R. China
| | - Yuanzhong Yang
- Department of PathologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060P. R. China
| | - Ma Luo
- Department of Imaging and Interventional RadiologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060P. R. China
| | - Zhihui Zhong
- Department of Imaging and Interventional RadiologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060P. R. China
| | - Xiaonan Xu
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong Kong999077P. R. China
| | - Ligong Lu
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital of Jinan UniversityZhuhai519000P. R. China
| | - Shuhuai Yao
- Bioengineering Graduate ProgramDepartment of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyHong Kong999077P. R. China
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong Kong999077P. R. China
| | - Fujun Zhang
- Department of Imaging and Interventional RadiologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060P. R. China
| |
Collapse
|
4
|
Hadji C, Dollet B, Bodiguel H, Drenckhan W, Coasne B, Lorenceau E. Impact of Fluorocarbon Gaseous Environments on the Permeability of Foam Films to Air. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13236-13243. [PMID: 33103908 DOI: 10.1021/acs.langmuir.0c02158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A foam film, free to move and stabilized with tetradecyltrimethylammonium bromide or sodium dodecylsulfate surfactants, is deposited inside of a cylindrical tube. It separates the tube into two distinct gaseous compartments. The first compartment is filled with air, while the second one contains a mixture of air and perfluorohexane vapor (C6F14), which is a barely water-soluble fluorinated compound. This foam film thus acts as a liquid semipermeable membrane for gases equivalent to the solid semipermeable membranes conventionally used in fluid separation processes. To infer the rate of air transfer through the membrane, we measure the displacement of the mobile foam film. From this, we deduce the instantaneous permeability of the membrane. In contrast to the permeability of solid membranes, which inexorably decreases over time because they become clogged, an anticlogging effect is observed with a permeability that systematically increases over time. Because the thickness of the film is constant over time, we attribute this to the possibility of adsorbing or desorbing fluorinated gas molecules on the liquid membrane. Indeed, because the partial pressure of the fluorinated gas is high at the beginning of the experiment, the density of the adsorbed molecules is also high, which leads to a low permeability to air transfer. On the contrary, at the end of the experiment, the partial pressure in fluorinated gas and thus the density of the adsorbed molecules are low. This leads to a higher permeability and a less clogged membrane.
Collapse
Affiliation(s)
- Céline Hadji
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | | | - Hugues Bodiguel
- Univ. Grenoble Alpes, Grenoble-INP, CNRS, LRP UMR5520, F-38000 Grenoble, France
| | - Wiebke Drenckhan
- Univ. Strasbourg, CNRS, Institut Charles Sadron, UPR22, F-67000 Strasbourg, France
| | - Benoît Coasne
- Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | | |
Collapse
|
5
|
Calderó G, Rodríguez-Abreu C, González A, Monge M, García-Celma MJ, Solans C. Biomedical perfluorohexane-loaded nanocapsules prepared by low-energy emulsification and selective solvent diffusion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110838. [PMID: 32279820 DOI: 10.1016/j.msec.2020.110838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/19/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Perfluorohexane-loaded nanocapsules are interesting materials for many biomedical applications such as oxygen delivery systems or contrast agents. However, their formulation into stable colloidal systems is challenging because of their hydro- and lipophobicity, high density and high vapour pressure. In this study, perfluorohexane-loaded polymeric nanocapsules are prepared for the first time by low-energy emulsification and selective solvent diffusion. The colloidal stability of the perfluorohexane nano-emulsion templates has been improved by the incorporation of an apolar low-density oil (isopropyl myristate) in the dispersed phase, thus addressing droplet coarsening and migration phenomena. The perfluorohexane-loaded nanocapsules prepared from the nano-emulsions show sizes smaller than the corresponding emulsion templates (below 150 nm by dynamic light scattering) and exhibit good stability under storage conditions. Hyperspectral enhanced dark field microscopy revealed a layered core/shell structure and allowed also to confirm the encapsulation of perfluorohexane which was quantified by elemental microanalysis. Although isopropyl myristate has an unfavourable biocompatibility profile, cell viability is enhanced when perfluorohexane is present in the nanocapsules, which is attributed to its high oxygen transport capacity.
Collapse
Affiliation(s)
- Gabriela Calderó
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| | - Carlos Rodríguez-Abreu
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Albert González
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Marta Monge
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Univ. de Barcelona, Unitat Associada d'I+D al CSIC- Av Joan XXIII, s/n, 08028 Barcelona, Spain
| | - Mª José García-Celma
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Univ. de Barcelona, Unitat Associada d'I+D al CSIC- Av Joan XXIII, s/n, 08028 Barcelona, Spain; Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Conxita Solans
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| |
Collapse
|
6
|
Shi D, Liu X, Counil C, Krafft MP. Fluorocarbon Exposure Mode Markedly Affects Phospholipid Monolayer Behavior at the Gas/Liquid Interface: Impact on Size and Stability of Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10025-10033. [PMID: 30548072 DOI: 10.1021/acs.langmuir.8b03546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although most phospholipid-shelled microbubbles (MBs) investigated for medical applications are stabilized by a fluorocarbon (FC) gas, information on the interactions between the phospholipid and FC molecules at the gas/water interface remains scarce. We report that the procedure of introduction of perfluorohexane (F-hexane), that is, either in the gas phase above dimyristoylphosphatidylcholine (DMPC) or dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers, or in the aqueous subphase, radically affects the compression isotherms. When introduced in the gas phase, F-hexane is rapidly incorporated in the interfacial film, but is also readily desorbed upon compression and eventually totally expelled from the phospholipid monolayers. By contrast, when introduced in the aqueous phase, F-hexane remains trapped at the interface. These dissimilar outcomes demonstrate that the phospholipid monolayer acts as a barrier that effectively hinders the transfer of the FC across the interfacial film. F-hexane was also found to significantly accelerate the adsorption kinetics of the phospholipids at the gas/water interface and to lower the interfacial tension, as assessed by bubble profile analysis tensiometry. The extent of these effects is more pronounced when F-hexane is provided from the gas phase. The size and stability characteristics of DMPC- and DPPC-shelled microbubbles were also found to depend on how the FC is introduced. As compared to reference MBs prepared under nitrogen only, introduction of F-hexane always causes a decrease in MB mean radius. However, while for DMPC this decrease depends on the F-hexane introduction procedure, it is independent from the procedure and most pronounced (from ∼2.0 μm to ∼1.0 μm) for DPPC. Introducing the FC in the gas phase has the strongest effect on MB half-life (t1/2 = ∼1.8 and 6.8 h for DMPC and DPPC, respectively), as compared to when it is delivered through the aqueous phase (∼0.8 and ∼1.7 h). Fluorocarbonless reference DMPC and DPPC bubbles had a half-life of ∼0.5 and 0.8 h, respectively. The effects of F-hexane on MB characteristics are discussed with regard to the interactions between phospholipids and F-hexane and monolayer fluidization effect, as revealed by the Langmuir and tensiometric studies.
Collapse
Affiliation(s)
- Da Shi
- University of Strasbourg , Institut Charles Sadron (CNRS) , 23 rue du Loess , 67034 Strasbourg , Cedex , France
| | - Xianhe Liu
- University of Strasbourg , Institut Charles Sadron (CNRS) , 23 rue du Loess , 67034 Strasbourg , Cedex , France
| | - Claire Counil
- University of Strasbourg , Institut Charles Sadron (CNRS) , 23 rue du Loess , 67034 Strasbourg , Cedex , France
| | - Marie Pierre Krafft
- University of Strasbourg , Institut Charles Sadron (CNRS) , 23 rue du Loess , 67034 Strasbourg , Cedex , France
| |
Collapse
|
7
|
Melich R, Valour JP, Urbaniak S, Padilla F, Charcosset C. Preparation and characterization of perfluorocarbon microbubbles using Shirasu Porous Glass (SPG) membranes. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.09.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Peng Y, Kheir JN, Polizzotti BD. Injectable Oxygen: Interfacing Materials Chemistry with Resuscitative Science. Chemistry 2018; 24:18820-18829. [DOI: 10.1002/chem.201802054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/11/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Yifeng Peng
- Translational Research Laboratory, Department of Cardiology; Boston Children's Hospital; Boston MA 02115 USA
- Department of Pediatrics; Harvard Medical School; Boston MA 02115 USA
| | - John N. Kheir
- Translational Research Laboratory, Department of Cardiology; Boston Children's Hospital; Boston MA 02115 USA
- Department of Pediatrics; Harvard Medical School; Boston MA 02115 USA
| | - Brian D. Polizzotti
- Translational Research Laboratory, Department of Cardiology; Boston Children's Hospital; Boston MA 02115 USA
- Department of Pediatrics; Harvard Medical School; Boston MA 02115 USA
| |
Collapse
|
9
|
Morgado P, Garcia AR, Martins LFG, Ilharco LM, Filipe EJM. Alkane Coiling in Perfluoroalkane Solutions: A New Primitive Solvophobic Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11429-11435. [PMID: 28922605 DOI: 10.1021/acs.langmuir.7b02516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we demonstrate that n-alkanes coil when mixed with perfluoroalkanes, changing their conformational equilibria to more globular states, with a higher number of gauche conformations. The new coiling effect is here observed in fluids governed exclusively by dispersion interactions, contrary to other examples in which hydrogen bonding and polarity play important roles. FTIR spectra of liquid mixtures of n-hexane and perfluorohexane unambiguously reveal that the population of n-hexane molecules in all-trans conformation reduces from 32% in the pure n-alkane to practically zero. The spectra of perfluorohexane remain unchanged, suggesting nanosegregation of the hydrogenated and fluorinated chains. Molecular dynamics simulations support this analysis. The new solvophobic effect is prone to have a major impact on the structure, organization, and therefore thermodynamic properties and phase equilibria of fluids involving mixed hydrogenated and fluorinated chains.
Collapse
Affiliation(s)
| | - Ana Rosa Garcia
- Departamento de Química e Farmácia, FCT, Universidade do Algarve , 8000 Faro, Portugal
| | - Luís F G Martins
- Centro de Química de Évora, Escola de Ciências e Tecnologia, Universidade de Évora , 7000-671 Évora, Portugal
| | | | | |
Collapse
|
10
|
Li Y, Wan J, Zhang Z, Guo J, Wang C. Targeted Soft Biodegradable Glycine/PEG/RGD-Modified Poly(methacrylic acid) Nanobubbles as Intelligent Theranostic Vehicles for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35604-35612. [PMID: 28967258 DOI: 10.1021/acsami.7b11392] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of multifunctional ultrasound contrast agents has inspired considerable interest in the application of biomedical imaging and anticancer therapeutics. However, combining multiple components that can preferentially accumulate in tumors in a nanometer scale poses one of the major challenges in targeting drug delivery for theranostic application. Herein, reflux-precipitation polymerization, and N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide-meditated amidation reaction were introduced to effectively generate a new type of soft glycine/poly(ethylene glycol) (PEG)/RGD-modified poly(methacrylic acid) nanobubbles with a uniform morphology and desired particle size (less than 100 nm). Because of the enhanced biocompatibility resulting from the glycine modification, over 80% of the cells survived, even though the dosage of glycine-modified polymeric nanobubbles was up to 5 mg/mL. By loading doxorubicin as an anticancer drug and perfluorohexane as an ultrasound probe, the resulting glycine/PEG/RGD-modified nanobubbles showed remarkable cancer therapeutic efficacy and a high quality of ultrasonic imaging; thus, the ultrasonic signal exhibited a 1.47-fold enhancement at the tumor site after intravenous injection. By integrating diagnostic and therapeutic functions into a single nanobubble, the new type of theranostic nanobubbles offers a promising strategy to monitor the therapeutic effects, giving important insights into the ultrasound-traced and enhanced targeting drug delivery in biomedical applications.
Collapse
Affiliation(s)
- Yongjing Li
- State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of ASIC & System, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Jiaxun Wan
- State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of ASIC & System, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Zihao Zhang
- State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of ASIC & System, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of ASIC & System, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, State Key Laboratory of ASIC & System, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , 220 Handan Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
11
|
Ando Y, Tabata H, Sanchez M, Cagna A, Koyama D, Krafft MP. Microbubbles with a Self-Assembled Poloxamer Shell and a Fluorocarbon Inner Gas. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12461-12467. [PMID: 27409141 DOI: 10.1021/acs.langmuir.6b01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The numerous applications of microbubbles in food science and medicine call for a better understanding and control of the effects of the properties of their shells on their stability and ability to resonate at chosen frequencies when submitted to an ultrasound field. We have investigated both millimetric and micrometric bubbles stabilized by an amphiphilic block copolymer, Poloxamer 188 (e.g., Pluronic F-68). Although Pluronic F-68 is routinely being used as a dispersing and foaming agent to facilitate phospholipid-based microbubble preparation, it has never been studied as a shell component per se. First, we investigated the adsorption kinetics of Pluronic F-68 at the interface between water and air, or air saturated with vapors of perfluorohexane (F-hexane), using bubble profile tensiometry analysis. F-Hexane was found to strongly accelerate the adsorption of Pluronic F-68 (at low concentrations) and decrease the interfacial tension values at equilibrium (at all concentrations). We also found that relatively stable microbubbles could unexpectedly be prepared from Pluronic F-68 in the absence of any other surfactant, but only when F-hexane was present. These bubbles showed an only limited volume increase over ∼3 h, while a 10-fold increase in size occurred within 200 s in the absence of a fluorocarbon. Remarkably, their deflation rate decreased when the Pluronic F-68 concentration decreased, suggesting that bubbles with semidilute copolymer coverage are more stable than those more densely covered by copolymer brushes. Single-bubble experiments using laser Doppler vibratometry showed that, by contrast with other surfactant-coated microbubbles, the resonance radius of the Pluronic F-68-coated microbubbles was lower than that of naked microbubbles, meaning that they are less elastic. It was also found that the bubble's vibrational displacement amplitude decreased substantially when the microbubbles were covered with Pluronic F-68, an effect that was further amplified by F-hexane.
Collapse
Affiliation(s)
- Yu Ando
- Faculty of Life and Medical Sciences, Doshisha University , Kyoto 610-0321, Japan
- Institut Charles Sadron (CNRS), University of Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| | - Hiraku Tabata
- Faculty of Life and Medical Sciences, Doshisha University , Kyoto 610-0321, Japan
- Institut Charles Sadron (CNRS), University of Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| | | | - Alain Cagna
- TECLIS Instruments , Tassin, 69160 Lyon Métropole, France
| | - Daisuke Koyama
- Faculty of Life and Medical Sciences, Doshisha University , Kyoto 610-0321, Japan
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
12
|
Ma J, Pourroy G, Krafft MP. Stable Small Composite Microbubbles Decorated with Magnetite Nanoparticles - A Synergistic Effect between Surfactant Molecules and Nanoparticles. J Oleo Sci 2016; 65:369-76. [PMID: 27087000 DOI: 10.5650/jos.ess16031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Three approaches to preparing iron oxide nanoparticle-decorated microbubbles (NP-decoMBs) have been investigated. The size and stability characteristics of these microbubbles (MBs) were investigated by optical microscopy, laser light scattering and an acoustical method, and compared with those of non-decorated MBs. First, magnetite nanoparticles (Fe3O4NPs) grafted with dimyristoylphosphatidylcholine (DMPC) were synthesized and used to prepare MBs by brief sonication under an atmosphere of air saturated with perfluorohexane. These MBs had a rather large mean radius (r ~ 12 µm), and a moderate volume of encapsulated gas. Remarkably, a second approach that consisted of dispersing unbound DMPC molecules in the aqueous phase along with DMPC-grafted Fe3O4NPs prior to sonication was found to drastically change the situation, allowing the obtaining of monomodal populations of much smaller (r ~ 0.6 µm) NP-decoMBs. The latter were echogenic and stable for at least 10 days at room temperature, without significant variation of their size characteristics. In a third approach, NP-decoMBs were directly prepared from dispersions of naked Fe3O4NPs in the presence of DMPC. The resulting NP-decoMBs suspensions consisted of broadly distributed bubble populations mostly containing two populations (with r ~ 5 and ~ 15 µm). Control microbubbles made of DMPC only were small (r ~ 1.3 µm), although not as small as those formed from DMPC-grafted Fe3O4NPs in the presence of free DMPC, and were less stable, with a room temperature half-life of only ~1 day. These observations imply that there is a synergy between the Fe3O4NPs and the DMPC molecules in the air/water interfacial film stabilization process.
Collapse
Affiliation(s)
- Jun Ma
- Institut Charles Sadron (ICS, CNRS, UPR 22). Université de Strasbourg
| | | | | |
Collapse
|
13
|
Krafft MP. Fluorine in medical microbubbles – Methodologies implemented for engineering and investigating fluorocarbon-based microbubbles. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Microscopic Characterization of Individual Submicron Bubbles during the Layer-by-Layer Deposition: Towards Creating Smart Agents. MATERIALS 2015; 8:4176-4190. [PMID: 28793432 PMCID: PMC5455618 DOI: 10.3390/ma8074176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 06/13/2015] [Accepted: 06/29/2015] [Indexed: 01/30/2023]
Abstract
We investigated the individual properties of various polyion-coated bubbles with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to track the individual particles of the submicron bubbles (SBs) encapsulated by the layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is on the two-step charge reversals of PE-SB complexes: the first is a reversal from negatively charged bare SBs with no PEs added to positive SBs encapsulated by polycations (monolayer deposition), and the second is overcharging into negatively charged PE-SB complexes due to the subsequent addition of polyanions (double-layer deposition). The details of these phenomena have been clarified through the analysis of a number of trajectories of various PE-SB complexes that experience either Brownian motion or electrophoresis. The contrasted results obtained from the analysis were as follows: an amount in excess of the stoichiometric ratio of the cationic polymers was required for the first charge-reversal, whereas the stoichiometric addition of the polyanions lead to the electrical neutralization of the PE-SB complex particles. The recovery of the stoichiometry in the double-layer deposition paves the way for fabricating multi-layered SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol to create smart agents for either drug delivery or ultrasound contrast imaging.
Collapse
|
15
|
Perfluoroalkylated poly(oxyethylene) thiols: Synthesis, adsorption dynamics and surface activity at the air/water interface, and bubble stabilization behaviour. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2014.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Krafft MP. Perfluoroalkyl chains as tools for film surface nano-patterning and soft microbubble engineering and decoration. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Kovalenko A, Jouhannaud J, Polavarapu P, Krafft MP, Waton G, Pourroy G. Hollow magnetic microspheres obtained by nanoparticle adsorption on surfactant stabilized microbubbles. SOFT MATTER 2014; 10:5147-5156. [PMID: 24909785 DOI: 10.1039/c4sm00318g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on the stabilization of nanoparticle-decorated microbubbles for long periods of time using a synergism between a soluble surfactant and nanoparticles. The soluble surfactant is the perfluoroalkyl phosphate C8F17(CH2)2OP(O)(OH)2 (labeled F8H2Phos) and the nanoparticles (NPs) are 20-25 nm cobalt ferrite (CoFe2O4). The NP-F8H2Phos system has been studied by dynamic light scattering, dynamic magnetic susceptibility measurements and thermal gravimetric analysis. Microbubbles with diameters in the 1-20 μm range have been stabilized in 0.1 M NaCl brine. Its presence is crucial for the long-term stabilization. The surfactant adsorbs rapidly on bubbles and slows down the bubble shrinkage. Thus, the NPs can attach to the bubble and form a hollow sphere with a rigid shell. The charge screening by NaCl favors the attachment of NPs to the bubble surface. The coverage of the bubbles by the CoFe2O4 nanoparticle layer is confirmed by thermally induced inflation-deflation experiments and the control of bubbles with a magnetic field.
Collapse
Affiliation(s)
- Artem Kovalenko
- Institut Charles Sadron (ICS) CNRS - Université de Strasbourg (UPR 22), 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | | | | | | | | | | |
Collapse
|
18
|
Kovalenko A, Polavarapu P, Pourroy G, Waton G, Krafft MP. pH-controlled microbubble shell formation and stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6339-6347. [PMID: 24821482 DOI: 10.1021/la5007023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on microbubbles with a shell self-assembled from an anionic perfluoroalkylated surfactant, perfluorooctyl(ethyl)phosphate (F8H2Phos). Microbubbles were formed and effectively stabilized from aqueous solutions of F8H2Phos at pH 5.6-8.5. This range overlaps the domains of existence of the monosodic and disodic salts. The shell morphology of microbubbles formed spontaneously by heating aqueous solutions of F8H2Phos was monitored during cooling, directly on the microscope's stage. At pH 5.6, the shell collapses through nucleation of folds, as typical for insoluble surfactants. At pH 8.5, no folds were seen during shrinking. At higher pH, the microbubbles rapidly adsorb on the glass. The effect of pH (from 5.6 to 9.7) on adsorption kinetics of F8H2Phos at the air/water interface, and on the elasticity of its Gibbs films, was determined. At low pH, F8H2Phos is highly surface active. The interfacial film undergoes a dilute-to-condensed phase transition and a dramatic increase of elastic module, leading to extremely high values (up to 500 mN m(-1)). At high pH, the surfactant's adsorption is quasi-instantaneous, but interfacial tension lowering is limited, leading to very low elastic module (∼5 mN m(-1)). At pH 5.6 and 8.5, the interfacial tension of F8H2Phos adsorbed on millimetric bubbles and compressed at a rate similar to that exerted on micrometric bubbles during deflation is lower than the equilibrium interfacial tension. Langmuir monolayers of F8H2Phos are highly stable at low pH and feature a liquid expanded/liquid condensed transition; at high pH, they do not withstand compression. Both mono- and disodic F8H2Phos salts are needed to effectively stabilize microbubbles: the rapidly adsorbed disodic salt stabilizes a newly created air/water interface; the more surface active monosodic salt then replaces the more water-soluble disodic salt at the interface. During deflation, the surfactant shell undergoes a transition toward a highly elastic phase, which further contributes to bubble stabilization.
Collapse
Affiliation(s)
- Artem Kovalenko
- Institut Charles Sadron (ICS, UPR CNRS 22), University of Strasbourg , 23 rue du Loess, 67034 Strasbourg, France
| | | | | | | | | |
Collapse
|
19
|
Nguyen PN, Nikolova G, Polavarapu P, Waton G, Phuoc LT, Pourroy G, Krafft MP. Compressible multi-scale magnetic constructs: decorating the outer surface of self-assembled microbubbles with iron oxide nanoparticles. RSC Adv 2013. [DOI: 10.1039/c3ra40908b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Kwan JJ, Borden MA. Lipid monolayer collapse and microbubble stability. Adv Colloid Interface Sci 2012; 183-184:82-99. [PMID: 22959721 DOI: 10.1016/j.cis.2012.08.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/16/2022]
Abstract
Microbubbles are micrometer-size gaseous particles suspended in water, and they are often stabilized by a lipid monolayer shell. Natural microbubbles are found in freshwater and saltwater systems, and engineered microbubbles have a variety of applications in food sciences, biotechnology and medicine. Lipid-coated microbubbles are found to have remarkable stability and mechanical behavior owing to the resistance of the lipid monolayer encapsulation to collapse. The purpose of this review is to tie in recent observations of lipid-coated microbubble dissolution and gas exchange with current literature on the physics of lipid monolayer collapse in the context of lung surfactant. Based on this analysis, we conclude that microbubble shells collapse through the nucleation of microscopic folds, which then catalyze the formation and aggregation of new folds, leading to macroscopic folding events. This process results in a cyclic behavior of crumple-to-smooth transitions, which can be modulated through lipid composition. Eventually, the microbubbles stabilize at 1-2 μm diameter, regardless of initial size or lipid composition, and various mechanisms for this stabilization are postulated. Our ultimate goal is to inspire the reader to consider lipid monolayer collapse as the main long-term stabilizing mechanism for lipid-coated microbubbles, and to stimulate the use of microbubbles as a platform for studying monolayer collapse phenomena.
Collapse
|
21
|
Krafft MP. Strasbourg's SOFFT team—Soft functional systems self-assembled from perfluoroalkylated molecular components. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2011.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Szíjjártó C, Rossi S, Waton G, Krafft MP. Effects of perfluorocarbon gases on the size and stability characteristics of phospholipid-coated microbubbles: osmotic effect versus interfacial film stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1182-1189. [PMID: 22176688 DOI: 10.1021/la2043944] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Micrometer-sized bubbles coated with phospholipids are used as contrast agents for ultrasound imaging and have potential for oxygen, drug, and gene delivery and as therapeutic devices. An internal perfluorocarbon (FC) gas is generally used to stabilize them osmotically. We report here on the effects of three relatively heavy FCs, perfluorohexane (F-hexane), perfluorodiglyme (F-diglyme ), and perfluorotriglyme (F-triglyme), on the size and stability characteristics of microbubbles coated with a soft shell of dimyristoylphosphatidylcholine (DMPC) and on the surface tension and compressibility of DMPC monolayers. Monomodal populations of small bubbles (~1.3 ± 0.2 μm in radius, polydispersivity index ~8%) were prepared by sonication, followed by centrifugal fractionation. The mean microbubble size, size distribution, and stability were determined by acoustical attenuation measurements, static light scattering, and optical microscopy. The half-lives of F-hexane- and F-diglyme-stabilized bubbles (149 ± 8 and 134 ± 3 min, respectively) were about 2 times longer than with the heavier F-triglyme (76 ± 7 min) and 4-5 times longer than with air (34 ± 3 min). Remarkably, the bubbles are smaller than the minimal size values calculated assuming that the bubbles are stabilized osmotically by the insoluble FC gases. Particularly striking is that bubbles 2 orders of magnitude smaller than the calculated collapse radius can be prepared with F-triglyme, while its very low vapor pressure prohibits any osmotic effect. The interface between an aqueous DMPC dispersion and air, or air (or N(2)) saturated with the FCs, was investigated by tensiometry and by Langmuir monolayer compressions. Remarkably, after 3 h, the tensions at the interface between an aqueous DMPC dispersion (0.5 mmol L(-1)) and air were lowered from ~50 ± 1 to ~37 ± 1 mN m(-1) when F-hexane and F-diglyme were present and to ~40 ± 1 mN m(-1) for F-triglyme. Also noteworthy, the adsorption kinetics of DMPC at the interface, as obtained by dynamic tensiometry, were accelerated up to 3-fold when the FC gases were present. The compression isotherms show that all these FC gases significantly increase the surface pressure (from ~0 to ~10 mN m(-1)) at large molecular areas (70 Å(2)), implying their incorporation into the DMPC monolayer. All three FC gases increase the monolayer's collapse pressures significantly (~61 ± 2 mN m(-1)) as compared to air (~54 ± 2 mN m(-1)), providing for interfacial tensions as low as ~11 mN m(-1) (vs ~18 mN m(-1) in their absence). The FC gases increase the compressibility of the DMPC monolayer by 20-50%. These results establish that, besides their osmotic effect, FC gases contribute to bubble stabilization by decreasing the DMPC interfacial tension, hence reducing the Laplace pressure. This contribution, although significant, still does not suffice to explain the large discrepancy observed between calculated and experimental bubble half-lives. The case of F-triglyme, which has no osmotic effect, indicates that its effects on the DMPC shell (increased collapse pressure, decreased interfacial tension, and increased compressibility) contribute to bubble stabilization. F-hexane and F-diglyme provided both the smallest mean bubble sizes and the longest bubble half-lives.
Collapse
Affiliation(s)
- Csongor Szíjjártó
- Systèmes Organisés Fluorés à Finalités Thérapeutiques (SOFFT), Institut Charles Sadron (CNRS, UPR 22), Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | | | | | | |
Collapse
|
23
|
Krafft MP. Controlling phospholipid self-assembly and film properties using highly fluorinated components – Fluorinated monolayers, vesicles, emulsions and microbubbles. Biochimie 2012; 94:11-25. [DOI: 10.1016/j.biochi.2011.07.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/19/2011] [Indexed: 01/23/2023]
|
24
|
Rossi S, Szíjjártó C, Gerber F, Waton G, Krafft MP. Fluorous materials in microbubble engineering science and technology—Design and development of new bubble preparation and sizing technologies. J Fluor Chem 2011. [DOI: 10.1016/j.jfluchem.2011.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Wang W, Liu GJ, Xie XY, Xu ZF, Chen LD, Huang GL, Zhou LY, Lu MD. Development and evaluation of lipid microbubbles targeted to alpha(v)beta(3)-integrin via biotin–avidin bridge. J Microencapsul 2011; 29:177-84. [DOI: 10.3109/02652048.2011.638993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Nguyen PN, Trinh Dang TT, Waton G, Vandamme T, Krafft MP. A Nonpolar, Nonamphiphilic Molecule Can Accelerate Adsorption of Phospholipids and Lower Their Surface Tension at the Air/Water Interface. Chemphyschem 2011; 12:2646-52. [DOI: 10.1002/cphc.201100425] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Indexed: 11/11/2022]
|
27
|
Morgado P, Laginhas CMC, Lewis JB, McCabe C, Martins LFG, Filipe EJM. Viscosity of Liquid Perfluoroalkanes and Perfluoroalkylalkane Surfactants. J Phys Chem B 2011; 115:9130-9. [DOI: 10.1021/jp201364k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Pedro Morgado
- Centro de Química Estrutural, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Carlos M. C. Laginhas
- Centro de Química de Évora, Universidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | | | | | - Luís F. G. Martins
- Centro de Química de Évora, Universidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Eduardo J. M. Filipe
- Centro de Química Estrutural, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| |
Collapse
|
28
|
Cox DJ, Thomas JL. Ultrasound-induced dissolution of lipid-coated and uncoated gas bubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14774-14781. [PMID: 20722377 DOI: 10.1021/la102583k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The 1.1 MHz ultrasound response of micrometer-scale perfluorobutane gas bubbles, coated with a mixture of 90 mol % saturated phospholipid (disteroylphosphatidylcholine, DSPC) or unsaturated phospholipid (dioleoylphosphatidylcholine, DOPC) and 10 mol % PEG-lipid, was studied by optical microscopy. Uncoated bubbles were also studied. Bubbles, resting buoyantly against the wall of a polystyrene cuvette, were exposed to brief pulses of ultrasound (∼200 kPa amplitude) at a repetition rate of 25 Hz; images of the bubbles were taken after every other pulse. The coating had little effect on the initial response: large (>10 μm diameter) bubbles showed no size change, while smaller bubbles rapidly shrank (or fragmented) to reach a stable or metastable diameter-ca. 2 μm for coated bubbles and 4 μm for uncoated bubbles. The coating had a significant effect on further bubble evolution: after reaching a metastable size, uncoated bubbles and DOPC-coated bubbles continued to shrink slowly and ultimately vanished entirely, while DSPC-coated bubbles did not change perceptibly during the duration of the exposure. Numerical modeling using the modified Herring equation showed that the size range in which DSPC bubbles responded does correspond well with the bubble resonance; the long-term stability of these bubbles may be related to the ability of the DSPC to form a two-dimensional solid at ambient temperature or to phase separate from the PEG-lipid.
Collapse
Affiliation(s)
- Debra J Cox
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87008, USA
| | | |
Collapse
|
29
|
Lozano MM, Starkel CD, Longo ML. Vesicles tethered to microbubbles by hybridized DNA oligonucleotides: flow cytometry analysis of this new drug delivery vehicle design. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8517-8524. [PMID: 20229988 PMCID: PMC2876220 DOI: 10.1021/la9044946] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hybridization of complementary lipid-linked DNA oligonucleotides was used to tether small unilamellar vesicles (SUVs) to the lipid monolayer shells of air-microbubbles, a new attachment design for a drug delivery vehicle to be used in tandem with ultrasound imaging. Flow cytometry was used, and a novel analysis was developed, based upon light scattering and fluorescence intensity, to quantify the fraction of microbubbles of chosen size-ranges with oligonucleotide-tethered fluorescently labeled SUVs. Fluorescence microscopy was used to verify that our methodology results in successful high-density SUV tethering to a similar fraction of the microbubbles when compared to the flow cytometry statistics. The fraction of successful tetherings increased with the concentration of the complementary lipid-linked oligonucleotide as expected and decreased with the time that microbubbles were incubated with SUVs, which was not expected. Also unexpected, a large fraction of microbubbles had only background fluorescence levels while a much smaller fraction (at most one-eighth, for the shortest incubation and highest concentration of lipid-linked oligonucleotide) had oligonucleotide-tethered fluorescently labeled SUVs and, according to our fluorescence microscopy, that small fraction was densely covered with SUVs. Ejection of the lipid-linked oligonucleotide during high surface pressure compression of the monolayer shells of actively shrinking microbubbles subjected to the Laplace overpressure is speculated as a qualitative explanation for the statistics.
Collapse
|
30
|
Kang E, Min HS, Lee J, Han MH, Ahn HJ, Yoon IC, Choi K, Kim K, Park K, Kwon IC. Nanobubbles from gas-generating polymeric nanoparticles: ultrasound imaging of living subjects. Angew Chem Int Ed Engl 2010; 49:524-8. [PMID: 20013828 DOI: 10.1002/anie.200903841] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eunah Kang
- Biomedical Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rossi S, Waton G, Krafft MP. Phospholipid-coated gas bubble engineering: key parameters for size and stability control, as determined by an acoustical method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1649-1655. [PMID: 20099916 DOI: 10.1021/la9025987] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have recently reported the sampling of differently sized monomodal populations of microbubbles from a polydisperse lipid-coated bubble preparation. The microbubbles were coated with dimyristoylphosphatidylcholine (DMPC) and stabilized by perfluorohexane (PFH). Such microbubbles are useful as contrast agents and, potentially, for oxygen, drug, and gene delivery and as therapeutic devices. Monomodal populations of small bubbles (approximately 1.6 microm in radius) and large bubbles (approximately 5.4 microm) have been obtained, as assessed by acoustical measurement, static light scattering, and optical microscopy. In this paper, we have determined the influence of various preparation parameters on the initial size characteristics (mean radius and radii distribution) of the microbubbles and on their stability upon time. The bubble size was determined acoustically, with a homemade acoustic setup equipped with a low-power emitter, to avoid altering the bubble stability. We have focused on the effects of the bubble flotation time during the fractionation process and on the DMPC concentration. PFH was indispensable for obtaining stable bubbles. The nature of the buffer [Isoton II vs N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)] used as the continuous phase did not significantly impact the bubble characteristics and stability. In both buffers, the half-lives of small bubbles (approximately 1.6 microm in radius in Isoton II and approximately 2.1 microm in HEPES) were found to be longer than those of larger ones (approximately 5.4 and approximately 5.9 microm in Isoton II and HEPES, respectively). The bubble stability study revealed that in both buffers, the average radius of the population of large bubbles progressively increased with time. On the other hand, the average radius of the population of small bubbles decreased slightly in Isoton II and remained constant in HEPES. This suggests that the dissolution behavior of small and large bubbles is governed by different mechanisms.
Collapse
Affiliation(s)
- Simona Rossi
- Systèmes Organisés Fluores à Finalités Thérapeutiques, Université de Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | | | | |
Collapse
|
32
|
Hadinoto K, Cheow WS. Hollow spherical nanoparticulate aggregates as potential ultrasound contrast agent: shell thickness characterization. Drug Dev Ind Pharm 2010; 35:1167-79. [PMID: 19555237 DOI: 10.1080/03639040902824845] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this work is to manufacture hollow spherical nanoparticulate aggregates for use as an ultrasound contrast agent by means of spray drying of nanoparticulate suspension at a fast drying rate. METHODOLOGY Biocompatible PMMA-MeOPEGMA and silica nanoparticles are used as the model nanoparticles. The impacts of changing the nanoparticle concentration, pH, and spray drying operating condition on the size and shell thickness-to-particle radius (S/R) ratio, which governs the shell mechanical stability, are investigated. RESULTS AND CONCLUSION The results indicate that the hollow microspheres size varies between 2 and 10 mum having S/R ratio between 2% and 4%, where the smaller size particles exhibit a higher S/R ratio. The resultant S/R ratio is found to be more influenced by process parameters acting at the nanoparticle scale (e.g., suspension pH) than by the spray drying operating condition.
Collapse
Affiliation(s)
- Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.
| | | |
Collapse
|
33
|
Kang E, Min H, Lee J, Han M, Ahn H, Yoon IC, Choi K, Kim K, Park K, Kwon I. Nanobubbles from Gas-Generating Polymeric Nanoparticles: Ultrasound Imaging of Living Subjects. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200903841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Ke H, Xing Z, Zhao B, Wang J, Liu J, Guo C, Yue X, Liu S, Tang Z, Dai Z. Quantum-dot-modified microbubbles with bi-mode imaging capabilities. NANOTECHNOLOGY 2009; 20:425105. [PMID: 19779227 DOI: 10.1088/0957-4484/20/42/425105] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aim of this paper was to develop a novel bi-mode ultrasound/fluorescent imaging agent through stepwise layer-by-layer deposition of poly(allylamine hydrochloride) (PAH) and CdTe quantum dots (QDs) onto ST68 microbubbles (MBs) produced by sonication of a mixture of surfactants (Span 60 and Tween 80). The experiments using photoluminescence spectroscopy and confocal laser scanning microscopy confirmed that CdTe nanoparticles were successfully adsorbed on the outer surface of the MBs. The static light scattering measurements showed that size distributions of MBs before and after QD deposition met the size requirements for clinical application. The in vitro and in vivo ultrasonography indicated that the QD-modified MBs maintained good contrast enhancement properties as the original MBs. Furthermore, the in vitro ultrasound-targeted microbubble destruction (UTMD) experiment of the QD-MB composites was carried out to validate the ability of MBs to deliver QDs for fluorescent imaging. The results showed that the QD-modified MBs not only maintained the capability of ultrasound imaging, but also could be used as a targeted-drug controlled-release system to deliver the QDs for cell and tissue fluorescent imaging by UTMD. The novel dual-functional imaging agent has potential for a variety of biological and medical applications.
Collapse
Affiliation(s)
- Hengte Ke
- Nanobiotechnology Division, Bio-X Center, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Riess JG. Highly fluorinated amphiphilic molecules and self-assemblies with biomedical potential. Curr Opin Colloid Interface Sci 2009. [DOI: 10.1016/j.cocis.2009.05.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Hadinoto K. Mechanical stability of hollow spherical nano-aggregates as ultrasound contrast agent. Int J Pharm 2009; 374:153-61. [DOI: 10.1016/j.ijpharm.2009.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 11/25/2022]
|