1
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
van der Wel PCA. Dihedral Angle Measurements for Structure Determination by Biomolecular Solid-State NMR Spectroscopy. Front Mol Biosci 2021; 8:791090. [PMID: 34938776 PMCID: PMC8685456 DOI: 10.3389/fmolb.2021.791090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
In structural studies of immobilized, aggregated and self-assembled biomolecules, solid-state NMR (ssNMR) spectroscopy can provide valuable high-resolution structural information. Among the structural restraints provided by magic angle spinning (MAS) ssNMR the canonical focus is on inter-atomic distance measurements. In the current review, we examine the utility of ssNMR measurements of angular constraints, as a complement to distance-based structure determination. The focus is on direct measurements of angular restraints via the judicious recoupling of multiple anisotropic ssNMR parameters, such as dipolar couplings and chemical shift anisotropies. Recent applications are highlighted, with a focus on studies of nanocrystalline polypeptides, aggregated peptides and proteins, receptor-substrate interactions, and small molecule interactions with amyloid protein fibrils. The review also examines considerations of when and where ssNMR torsion angle experiments are (most) effective, and discusses challenges and opportunities for future applications.
Collapse
Affiliation(s)
- Patrick C. A. van der Wel
- Solid-state NMR Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Exploring Protein Structures by DNP-Enhanced Methyl Solid-State NMR Spectroscopy. J Am Chem Soc 2019; 141:19888-19901. [DOI: 10.1021/jacs.9b11195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Reese M, George C, Yang C, Jawla S, Grün JT, Schwalbe H, Redfield C, Temkin RJ, Griffin RG. Modular, triple-resonance, transmission line DNP MAS probe for 500 MHz/330 GHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 307:106573. [PMID: 31505305 PMCID: PMC6766420 DOI: 10.1016/j.jmr.2019.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
We describe the design and construction of a modular, triple-resonance, fully balanced, DNP-MAS probe based on transmission line technology and its integration into a 500 MHz/330 GHz DNP-NMR spectrometer. A novel quantitative probe design and characterization strategy is developed and employed to achieve optimal sensitivity, RF homogeneity and excellent isolation between channels. The resulting three channel HCN probe has a modular design with each individual, swappable module being equipped with connectorized, transmission line ports. This strategy permits attachment of a mating connector that facilitates accurate impedance measurements at these ports and allows characterization and adjustment (e.g. for balancing or tuning/matching) of each component individually. The RF performance of the probe is excellent; for example, the 13C channel attains a Rabi frequency of 280 kHz for a 3.2 mm rotor. In addition, a frequency tunable 330 GHz gyrotron operating at the second harmonic of the electron cyclotron frequency was developed for DNP applications. Careful alignment of the corrugated waveguide led to minimal loss of the microwave power, and an enhancement factor ε = 180 was achieved for U-13C urea in the glassy matrix at 80 K. We demonstrated the operation of the system with acquisition of multidimensional spectra of cross-linked lysozyme crystals which are insoluble in glycerol-water mixtures used for DNP and samples of RNA.
Collapse
Affiliation(s)
- Marcel Reese
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Christy George
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Chen Yang
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Sudheer Jawla
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - J Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Richard J Temkin
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
5
|
Wang S, Ladizhansky V. Recent advances in magic angle spinning solid state NMR of membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:1-26. [PMID: 25444696 DOI: 10.1016/j.pnmrs.2014.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 05/14/2023]
Abstract
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to membrane proteins that are uniformly aligned in the magnetic field, has been successful in determining the backbone structures of a handful of membrane proteins. Owing to methodological and technological developments, Magic Angle Spinning (MAS) solid-state NMR (ssNMR) spectroscopy has emerged as another major technique for the complete characterization of the structure and dynamics of membrane proteins. First developed on peptides and small microcrystalline proteins, MAS ssNMR has recently been successfully applied to large membrane proteins. In this review we describe recent progress in MAS ssNMR methodologies, which are now available for studies of membrane protein structure determination, and outline a few examples, which highlight the broad capability of ssNMR spectroscopy.
Collapse
Affiliation(s)
- Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
6
|
|
7
|
SivaRanjan U, Ramachandran R. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory. J Chem Phys 2014; 140:054101. [DOI: 10.1063/1.4863212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Li J, van der Wel PCA. Spinning-rate encoded chemical shift correlations from rotational resonance solid-state NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 230:117-24. [PMID: 23475055 PMCID: PMC3635064 DOI: 10.1016/j.jmr.2013.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/22/2013] [Accepted: 02/04/2013] [Indexed: 05/23/2023]
Abstract
Structural measurements in magic-angle-spinning (MAS) solid-state NMR rely heavily on (13)C-(13)C distance measurements. Broadbanded recoupling methods are used to generate many cross-peaks, but have complex polarization transfer mechanisms that limit the precision of distance constraints and can suffer from weak intensities for distant peaks due to relaxation, the broad distribution of polarization, as well as dipolar truncation. Frequency-selective methods that feature narrow-banded recoupling can reduce these effects. Indeed, rotational resonance (R(2)) experiments have found application in many different biological systems, where they have afforded improved precision and accuracy. Unfortunately, a highly selective transfer mechanism also leads to few cross-peaks in the resulting spectra, which complicates the extraction of multiple constraints. R(2)-width (R(2)W) measurements that scan a range of MAS rates to probe the R(2) matching conditions of one or more sites can improve precision, and also permit multiple simultaneous distance measurements. However, multidimensional R(2)W can be very time-consuming. Here, we present an approach that facilitates the acquisition of 2D-like spectra based on a series of 1D R(2)W experiments, by taking advantage of the chemical shift information encoded in the MAS rates where matching occurs. This yields a more time-efficient experiment with many of the benefits of more conventional multidimensional R(2)W measurements. The obtained spectra reveal long-distance (13)C-(13)C cross-peaks resulting from R(2)-mediated polarization transfer. This experiment also enables the efficient setup and targeted implementation of traditional R(2) or R(2)W experiments. Analogous applications may extend to other variable-MAS and frequency-selective solid-state NMR experiments.
Collapse
Affiliation(s)
- Jun Li
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, Pennsylvania 15260, USA
| | - Patrick C. A. van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
9
|
van der Wel PC, Lewandowski JR, Griffin RG. Structural characterization of GNNQQNY amyloid fibrils by magic angle spinning NMR. Biochemistry 2010; 49:9457-69. [PMID: 20695483 PMCID: PMC3026921 DOI: 10.1021/bi100077x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several human diseases are associated with the formation of amyloid aggregates, but experimental characterization of these amyloid fibrils and their oligomeric precursors has remained challenging. Experimental and computational analysis of simpler model systems has therefore been necessary, for instance, on the peptide fragment GNNQQNY7−13 of yeast prion protein Sup35p. Expanding on a previous publication, we report here a detailed structural characterization of GNNQQNY fibrils using magic angle spinning (MAS) NMR. On the basis of additional chemical shift assignments we confirm the coexistence of three distinct peptide conformations within the fibrillar samples, as reflected in substantial chemical shift differences. Backbone torsion angle measurements indicate that the basic structure of these coexisting conformers is an extended β-sheet. We structurally characterize a previously identified localized distortion of the β-strand backbone specific to one of the conformers. Intermolecular contacts are consistent with each of the conformers being present in its own parallel and in-register sheet. Overall the MAS NMR data indicate a substantial difference between the structure of the fibrillar and crystalline forms of these peptides, with a clearly increased complexity in the GNNQQNY fibril structure. These experimental data can provide guidance for future work, both experimental and theoretical, and provide insights into the distinction between fibril growth and crystal formation.
Collapse
Affiliation(s)
| | | | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
10
|
Spano J, Wi S. Dipolar-coupling-mediated total correlation spectroscopy in solid-state 13C NMR: selection of individual 13C-13C dipolar interactions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 204:314-326. [PMID: 20392659 DOI: 10.1016/j.jmr.2010.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/10/2010] [Accepted: 03/18/2010] [Indexed: 05/29/2023]
Abstract
Herein is described a useful approach in solid-state NMR, for selecting homonuclear (13)C-(13)C spin pairs in a multiple-(13)C homonuclear dipolar coupled spin system. This method builds upon the zero-quantum (ZQ) dipolar recoupling method introduced by Levitt and coworkers (Marin-Montesinos et al., 2006) by extending the originally introduced one-dimensional (1D) experiment into a two-dimensional (2D) method with selective irradiation scheme, while moving the (13)C-(13)C mixing scheme from the transverse to the longitudinal mode, together with a dramatic improvement in the proton decoupling efficiency. Selective spin-pair recoupling experiments incorporating Gaussian and cosine-modulated Gaussian pulses for inverting specific spins were performed, demonstrating the ability to detect informative, simplified/individualized, long-range (13)C-(13)C homonuclear dipolar coupling interactions more accurately by removing less informative, stronger, short-range (13)C-(13)C interactions from 2D correlation spectra. The capability of this new approach was demonstrated experimentally on uniformly (13)C-labeled Glutamine and a tripeptide sample, GAL.
Collapse
Affiliation(s)
- Justin Spano
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
11
|
Ladizhansky V. Homonuclear dipolar recoupling techniques for structure determination in uniformly 13C-labeled proteins. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2009; 36:119-128. [PMID: 19729285 DOI: 10.1016/j.ssnmr.2009.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/21/2009] [Indexed: 05/28/2023]
Abstract
In solid-state NMR magic angle spinning is often used to remove line broadening associated with anisotropic interactions, such as chemical shift anisotropy and dipolar couplings. Dipolar recoupling refers to sequences of pulses designed to reintroduce dipolar interactions that are otherwise averaged by magic angle spinning. One of the key applications of homonuclear (and heteronuclear) dipolar recoupling is for the purpose of protein structure determination. Recoupling experiments, originally designed for applications in spin-pair labeled samples, have been revised in recent years for applications in samples with extensive or uniform incorporation of isotopic labels. In these samples multiple internuclear distances can in principle be probed simultaneously, but the dipolar truncation effects (i.e. attenuation of the effects of weak couplings by strong ones) circumvent such measurements. In this article we review some of the recent developments in homonuclear recoupling methods that allow overcoming this problem.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| |
Collapse
|
12
|
Barnes AB, Andreas LB, Huber M, Ramachandran R, van der Wel PC, Veshtort M, Griffin RG, Mehta MA. High-resolution solid-state NMR structure of alanyl-prolyl-glycine. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 200:95-100. [PMID: 19596601 PMCID: PMC4133121 DOI: 10.1016/j.jmr.2009.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/05/2009] [Accepted: 06/10/2009] [Indexed: 05/21/2023]
Abstract
We present a de novo high-resolution structure of the peptide Alanyl-Prolyl-Glycine using a combination of sensitive solid-state NMR techniques that each yield precise structural constraints. High-quality (13)C-(13)C distance constraints are extracted by fitting rotational resonance width (R(2)W) experiments using Multimode Multipole Floquet Theory and experimental chemical shift anisotropy (CSA) orientations. In this strategy, a structure is first calculated using DANTE-REDOR and torsion angle measurements and the resulting relative CSA orientations are used as an input parameter in the (13)C-(13)C distance calculations. Finally, a refined structure is calculated using all the constraints. We investigate the effect of different structural constraints on structure quality, as determined by comparison to the crystal structure and also self-consistency of the calculated structures. Inclusion of all or subsets of these constraints into CNS calculations resulted in high-quality structures (0.02A backbone RMSD using all 11 constraints).
Collapse
Affiliation(s)
- Alexander B. Barnes
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts, Institute of Technology, Cambridge, MA 02139, USA
| | - Loren B. Andreas
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts, Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Matthias Huber
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts, Institute of Technology, Cambridge, MA 02139, USA
- ETH Zurich, Physical Chemistry, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Ramesh Ramachandran
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts, Institute of Technology, Cambridge, MA 02139, USA
- Indian Institute of Science Education Research (IISER), Mohali, Chandigarh, India
| | - Patrick C.A. van der Wel
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts, Institute of Technology, Cambridge, MA 02139, USA
- University of Pittsburgh, Department of Structural Biology, Pittsburgh, PA 15260, USA
| | - Mikhail Veshtort
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts, Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts, Institute of Technology, Cambridge, MA 02139, USA
| | - Manish A. Mehta
- Department of Chemistry, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| |
Collapse
|