1
|
Yang XY, Li GH, Huang X, Yu YS. Evaporative Deposition of Surfactant-Laden Nanofluid Droplets over a Silicon Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11666-11674. [PMID: 36097700 DOI: 10.1021/acs.langmuir.2c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Morphologies of evaporative deposition, which has been widely applied in potential fields, were induced by the competition between internal flows inside evaporating droplets. Controlling the pattern of deposition and suppressing the coffee-ring effect are essential issues of intense interest in the aspects of industrial technologies and scientific applications. Here, evaporative deposition of surfactant-laden nanofluid droplets over silicon was experimentally investigated. A ring-like deposition was formed after complete evaporation of sodium dodecyl sulfate (SDS)-laden nanofluid droplets with an initial SDS concentration ranging from 0 to 1.5 CMC. In the case of initial SDS concentrations above 1.3 CMC, no cracks were observed in the ring-like deposition, indicating that the deposition patterns of nanofluid droplets could be completely changed and cracks could be eliminated by sufficient addition of SDS. With the increase of the initial concentration of hexadecyl trimethylammonium bromide (CTAB), the width of the deposition ring gradually decreased until no ring-like structure was formed. On the contrary, with the increase of the initial Triton X-100 (TX-100) concentration, the width of the deposition ring gradually increased until a uniform deposition was generated. Moreover, when the initial TX-100 concentration was high, a "tree-ring-like" pattern was discovered. Besides, morphologies of evaporative pattern due to the addition of surfacants were qualitatively analyzed.
Collapse
Affiliation(s)
- Xiao-Ye Yang
- Department of Mechanics, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Guo-Hao Li
- Department of Mechanics, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Xianfu Huang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Song Yu
- Department of Mechanics, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, P. R. China
| |
Collapse
|
2
|
Polymer film deposition from a receding solution meniscus: The effect of laminar forced air convection. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Ding C, Hu JC, Yuan W, Du DZ, Yang Y, Chen G, Zhang KQ. Facile fabrication of centimeter-scale stripes with inverse-opal photonic crystals structure and analysis of formation mechanism. RSC Adv 2016. [DOI: 10.1039/c6ra07314j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A facile fabrication process for centimeter-scale colloidal photonic crystal stripe is developed through self-assembling polymer microspheres and silica colloidal nanoparticles. With the aid of sintering, porous-ordered microstructure forms.
Collapse
Affiliation(s)
- Chen Ding
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Jian-Chen Hu
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Wei Yuan
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - De-Zhuang Du
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Ya Yang
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk
- College of Textile and Clothing Engineering
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
4
|
Farcau C, Potara M, Leordean C, Boca S, Astilean S. Reliable plasmonic substrates for bioanalytical SERS applications easily prepared by convective assembly of gold nanocolloids. Analyst 2014; 138:546-52. [PMID: 23171872 DOI: 10.1039/c2an36440a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to easily prepare Surface Enhanced Raman Scattering (SERS) substrates by the assembly of chemically synthesized gold nanocolloids is of great interest for the advancement of SERS-based optical detection and identification of molecular species of biological or chemical interest, pollutants or warfare agents. In this work we employ three very simple strategies, which can be implemented in any laboratory without the need for specialized equipment, to prepare assemblies of citrate-stabilized spherical gold colloids: (i) drop-coating, which induces the assembly of colloids in so-called coffee rings; (ii) a simplified variant of convective self-assembly (CSA), based on water evaporation in a constrained geometry, which yields highly uniform strips of nanoparticles (NP); (iii) assembly onto chemically functionalized glass surfaces which yields randomly assembled colloids and colloidal clusters. The SERS properties of the resulting colloidal assemblies are comparatively evaluated under multiple excitation lines with p-aminothiophenol (pATP) as a model Raman scatterer. The NP strips obtained by CSA prove to be SERS-active both in the visible and NIR and possess a highly uniform SERS response as demonstrated by spectra at individually selected sites and by confocal SERS mapping. Further it is shown that these NP strips are effective for the detection of cytosine, a DNA component, and for multi-analyte SERS detection. These results, showing how an efficient SERS substrate can be obtained by a very simple assembly method from easy-to-synthesize colloidal gold NP, can have an impact on the development of analytical SERS applications.
Collapse
Affiliation(s)
- Cosmin Farcau
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research in Bio-Nano-Sciences, Faculty of Physics, Babes-Bolyai University, 42 Treboniu Laurian, 400271 Cluj-Napoca, Romania.
| | | | | | | | | |
Collapse
|
5
|
Jung YD, Ahn KH. Prediction of coating thickness in the convective assembly process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15762-15769. [PMID: 24328363 DOI: 10.1021/la4033139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Convective assembly is a coating method to fabricate thin films with ordered particle structures that can be used extensively for biochemical sensors, data storage devices, optical devices, and other applications. The fluid flow into or through the close-packed region causes the convective assembly, and it is important to understand the formation mechanism of the close-packed region. In this paper, the length of the close-packed region was predicted, and the dimensionless coating thickness as well as the dimensionless length of the close-packed region was found to be the functions of only three dimensionless variables: two capillary numbers and the initial volume fraction. From the modeling results, coating process regime maps that predict the dimensionless coating thickness in terms of the dimensionless variables were created. In addition, the length of the close-packed region was measured under various coating conditions to validate the model prediction. The experiments firmly supported the model predictions.
Collapse
Affiliation(s)
- Yoon Dong Jung
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University , Seoul, 151-744, Korea
| | | |
Collapse
|
6
|
Morales VL, Parlange JY, Wu M, Pérez-Reche FJ, Zhang W, Sang W, Steenhuis TS. Surfactant-mediated control of colloid pattern assembly and attachment strength in evaporating droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1831-1840. [PMID: 23327491 DOI: 10.1021/la304685b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study demonstrates that the pattern assembly and attachment strength of colloids in an evaporating sessile droplet resting on a smooth substrate can be controlled by adding nonionic solutes (surfactant) to the solution. As expected, increasing the surfactant concentration leads to a decrease in initial surface tension of the drop, σ(0). For the range of initial surface tensions investigated (39-72 mN m(-1)), three distinct deposition patterns were produced: amorphous stains (σ(0) = 63-72 mN m(-1)), coffee-ring stains (σ(0) = 48-53 mN m(-1)), and concentric rings (σ(0) = 39-45 mN m(-1)). A flow-displacement system was used to measure the attachment strength of the dried colloids. Characteristic drying regimes associated with the three unique pattern formations are attributed to abrupt transitions of contact line dynamics during evaporation. The first transition from slipping- to pinned-contact line was found to be a direct result of the competition between mechanical instability of the droplet and the friction generated by pinned colloids at the contact line. The second transition from pinned- to recurrent-stick-rip-slip-contact line was caused by repeated liquid film rupturing from evaporation-intensified surfactant concentration. Data from flow-displacement tests indicate that attachment strength of dried particles is strongest for amorphous stains (lowest surfactant concentration) and weakest for concentric rings (highest surfactant concentration). The mechanism behind these observations was ascribed to the formation and adsorption of micelles onto colloid and substrate surfaces as the droplet solution evaporates. The range of attachment forces observed between the colloids and the solid substrate were well captured by extended-DLVO interactions accounting for van der Waals attraction, electric double layer repulsion, and micelle-protrusion repulsion. Both empirical and theoretical results suggest that an increasingly dense layer of adsorbed micellar-protrusions on colloid and substrate surfaces acts as a physical barrier that hinders strong van der Waals attractive interactions at close proximity. Thereby, colloid stains dried at higher surfactant concentrations are more easily detached from the substrate when dislodging forces are applied than stains dried at lower surfactant concentrations.
Collapse
Affiliation(s)
- Verónica L Morales
- SIMBIOS Centre, University of Abertay Dundee, Dundee DD1 1HG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
7
|
Askounis A, Sefiane K, Koutsos V, Shanahan MER. Structural transitions in a ring stain created at the contact line of evaporating nanosuspension sessile drops. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012301. [PMID: 23410325 DOI: 10.1103/physreve.87.012301] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 11/08/2012] [Indexed: 06/01/2023]
Abstract
Monodisperse nanosuspension droplets, placed on a flat surface, evaporated following the stick-slip motion of the three-phase contact line. Unexpectedly, a disordered region formed at the exterior edge of a closely packed nanocolloidal crystalline structure during the "stick" period. In order to assess the role of particle velocity on particle structuring, we did experiments in a reduced pressure environment which allowed the enhancement of particle velocity. These experiments revealed the promotion of hexagonal packing at the very edge of the crystallite with increasing velocity. Quantification of particle velocity and comparison with measured deposit shape for each case allowed us to provide a tentative description of the underlying mechanisms that govern particle deposition of nanoparticles at the triple line of an evaporating droplet. Behavior is governed by an interplay between the fluid, and hence particle, flow velocity (main ordering parameter) and wedge constraints, and consequently disjoining pressure (main disordering parameter). Furthermore, the formation of a second disordered particle region at the interior edge of the deposit (towards bulk fluid) was found and attributed to the rapid motion of the triple line during the "slip" regime. Additionally, the magnitude of the pinning forces acting on the triple line of the same drops was calculated. These findings provide further insight into the mechanisms of the phenomenon and could facilitate its exploitation in various nanotechnological applications.
Collapse
Affiliation(s)
- Alexandros Askounis
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JL, United Kingdom
| | | | | | | |
Collapse
|
8
|
Farcau C, Sangeetha NM, Decorde N, Astilean S, Ressier L. Microarrays of gold nanoparticle clusters fabricated by Stop&Go convective self-assembly for SERS-based sensor chips. NANOSCALE 2012; 4:7870-7877. [PMID: 23149550 DOI: 10.1039/c2nr32781c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
SERS substrates fabricated from chemically synthesized nanoparticles (NPs) offer a distinct advantage of localizing and enhancing the electromagnetic fields by facile tuning of NP size, shape and interparticle distances. In this report, two-dimensional arrays of micrometre-sized clusters of gold nanoparticles protected by (i) sodium citrate and (ii) tris(2,4-dimethyl-5-sulfonatophenyl)phosphine (TDSP) ligands were directly assembled from colloidal suspensions onto flat, non-patterned substrates by discontinuous ('Stop&Go') convective self-assembly. The micrometric spacing between the NP clusters makes it easy to address them individually by confocal Raman microscopy. The packing of the gold NPs within these clusters with interparticle spacings of the order of nanometres leads to an optical response dominated by coupled surface plasmon resonances, and favours a strong enhancement of electromagnetic fields useful for surface enhanced Raman scattering (SERS). These NP clusters make very uniform SERS substrates, with reproducible SERS responses from cluster to cluster. The potential of these NP clusters for optical biosensing is demonstrated by the SERS detection of a biologically relevant molecule, cytosine, adsorbed onto the NP clusters. The presented results are promising for designing an original class of nanoparticle-based SERS microarrays. The new paradigm of convective self-assembly could be exploited generally for the patterning of various other types of colloidal micro- and nano-objects, such as semiconducting NPs, magnetic NPs, bacteria or proteins.
Collapse
Affiliation(s)
- Cosmin Farcau
- Babes-Bolyai University, Faculty of Physics, Institute for Interdisciplinary Research in Bio-Nano-Sciences, 1 M. Kogalniceanu, 400084 Cluj-Napoca, Romania
| | | | | | | | | |
Collapse
|
9
|
Use of attractive forces to create a self-assembled film of charged nano-particles with a controlled packing. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Qian L, Zhai S, Jiang Y, Das B. Nanoscale convection assisted self-assembly of nanoparticle monolayer. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16220b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kovalchuk VI, Zholkovskiy EK, Bondarenko MP, Starov VM, Vollhardt D. Concentration polarization effect at the deposition of charged Langmuir monolayers. Adv Colloid Interface Sci 2011; 168:114-23. [PMID: 21620351 DOI: 10.1016/j.cis.2011.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
Abstract
The review summarizes the results of the recent studies of the electrokinetic relaxation process within the meniscus region during the deposition of charged Langmuir monolayers. Such electrokinetic relaxation is the consequence of the initial misbalance of partial ion fluxes within a small region near the contact line, where the diffuse parts of electric double layers, formed at the monolayer and the substrate surface, overlap. The concentration polarization within the solution near the three-phase contact line should lead to long-term relaxations of the meniscus after beginning and stopping the deposition process, to changes of the ionic composition within the deposited films, to change of the interaction of the monolayer with the substrate, and to dependence of the maximum deposition rate on the subphase composition.
Collapse
|
12
|
Brewer DD, Shibuta T, Francis L, Kumar S, Tsapatsis M. Coating process regimes in particulate film production by forced-convection-assisted drag-out. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11660-11670. [PMID: 21823667 DOI: 10.1021/la202040x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Operating conditions for the deposition of monolayer and bilayer particulate coatings from aqueous 20-nm-diameter silica dispersions are identified in the context of a drag-out operation assisted by forced convection. The dry film thickness, uniformity, and morphology are assessed within an operating window parametrized by the capillary number and silica dispersion weight fraction. Three film deposition regimes with respect to the capillary number are observed: convective film deposition at low process rates, film entrainment at moderate process rates, and a thin-film transition regime at intermediate process rates. Locally ordered particulate films of variable layering thickness, including (i) a discontinuous submonolayer or (ii) a mixed submonolayer and monolayer, (iii) a mixed monolayer and bilayer, and (iv) multilayers, are dominant under convective deposition conditions. A map of morphologies is presented within the capillary number-weight fraction operating window, where monolayer and mixed monolayer-bilayer films are demonstrated in the thin-film transition regime at an intermediate dispersion weight fraction. A complementary map of the morphologies formed by the drag-out of 110 nm silica dispersions reveals a broader applicability to this type of operability diagram. These operating maps are constructed using model silica dispersions and are therefore relevant to particulate coatings of other inorganic materials.
Collapse
Affiliation(s)
- Damien D Brewer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
13
|
Farcau C, Moreira H, Viallet B, Grisolia J, Ressier L. Tunable conductive nanoparticle wire arrays fabricated by convective self-assembly on nonpatterned substrates. ACS NANO 2010; 4:7275-82. [PMID: 21038893 DOI: 10.1021/nn102128w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ordered arrays of centimeter-long nanoparticle wires are fabricated by convective self-assembly from aqueous suspensions of 18 nm gold colloids, on flat SiO(2)/Si substrates without any prepatterning. The orientation of the wires can be switched from parallel to perpendicular to the substrate-liquid-air contact line by controlling the substrate temperature. While the wires parallel to the meniscus are obtained by a stick-slip process, a mechanism based on critical density-triggered particle pinning is proposed to explain the formation of wires perpendicular to the meniscus. The geometry of the wire arrays is tuned by simply controlling the meniscus translation speed. Wires are typically characterized by widths of a few micrometers (1.8-8.2 µm), thicknesses of mono- to multilayers (18-70 nm), and spacings of few tens of micrometers. The fabricated nanoparticle wires are conductive, exhibiting a metallic resistive behavior in ambient conditions. Resistivity values of 5 × 10(-6) and 5 × 10(-2) Ωm are obtained on multilayer and monolayer nanoparticle wires, respectively. Such conductive nanoparticle wire arrays, fabricated by a simple and low-cost bottom-up strategy, offer opportunities for developing nanoparticle-based functional devices.
Collapse
Affiliation(s)
- Cosmin Farcau
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | | | | | | | | |
Collapse
|
14
|
Rogowski RZ, Darhuber AA. Crystal growth near moving contact lines on homogeneous and chemically patterned surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:11485-11493. [PMID: 20486716 DOI: 10.1021/la101002x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have systematically investigated how solution crystallization in the proximity of moving contact lines can be modulated by the parameters of the coating flow as well as chemical patterning of the substrate surface. We have studied the monoclinic model substance nicotinamide in the solvent isopropanol, which tends to form needle-like crystals in bulk solution. Three crystallization regimes were identified dependent on the coating speed. At high speeds viscous entrainment dominates over solvent evaporation, and an essentially azimuthally isotropic, spherulithic morphology results. For intermediate speeds a branched morphology with preferential alignment parallel to the coating direction is observed. For low speeds, filament-like crystal patterns well aligned with the coating direction were obtained.
Collapse
Affiliation(s)
- R Z Rogowski
- Mesoscopic Transport Phenomena Group, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | |
Collapse
|