1
|
Cai K, Liu J, Liu Y, Chen F, Yan G, Lin H. Application of a transparent window vibrational probe (azido probe) to the structural dynamics of model dipeptides and amyloid β-peptide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117681. [PMID: 31685425 DOI: 10.1016/j.saa.2019.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The azido asymmetric stretching motion is widely used for the elucidation of the intrinsic conformational preference and folding mechanism of protein since it has strong vibrational absorbance in the spectral transparent windows. However, the possible secondary structural disturbance induced by the insertion of azido group in the side chain of polypeptides should be carefully evaluated. Here, DFT calculation and enhanced sampling method were employed for model dipeptides with or without azido substitution, and the outcome results show that the lower potential energy basins of isolated model dipeptides are consistent with the preferred structural distributions of model dipeptides in aqueous solution. The azido asymmetric stretching frequency shows its sensitivity to the backbone configurations just like amide-I vibration does, and the azido vibration exhibits great potential as a structural reporter in the transparent window. For the evaluation of the application of azido group in biologically related system, the structural dynamics of Aβ37-42 and N3-Aβ37-42 fragments and the self-assemble process of their protofiliments in aqueous solution were demonstrated. The outcome results show that the structural fluctuations of Aβ37-42 and its protofilament in aqueous solution are quite similar with or without azido substitution, and the dewetting transitions of Aβ37-42 and N3-Aβ37-42 β-sheet layers are both complete within 30 ns and assemble into stable protofilaments. Therefore, the azido asymmetric vibrational motion is a minimally invasive structural probe and would not introduce much disturbance to the structural dynamics of polypeptides.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China.
| | - Jia Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China
| | - Ya'nan Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China
| | - Feng Chen
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, 352100, PR China
| | - Guiyang Yan
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, 352100, PR China
| | - Huiqiu Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China
| |
Collapse
|
2
|
Cai K, Su T, Lin S, Zheng R. Molecular mechanics force field-based general map for the solvation effect on amide I probe of peptide in different micro-environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 117:548-556. [PMID: 24036186 DOI: 10.1016/j.saa.2013.08.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
A general electrostatic potential map based on molecular mechanics force field for modeling the amide I frequency is presented. This map is applied to N-methylacetamide (NMA) and designed to be transferable in different micro-environments. The electrostatic potentials from solvent and peptide side chain are projected on the amide unit of NMA to induce the frequency shift of amide I mode. It is shown that the predicted amide I frequency reproduces the experimental data satisfactorily, especially when NMA in polar solvents. The amide I frequency shift is largely determined by the solvents in aqueous solution while it is dominated by the local structure of peptide in other solvent environments. The map parameters are further applied on NMA-MeOH system and the obtained IR spectra show doublet peak profile with negligible deviation from the experimental data, suggesting the usefulness of this general map for providing information about vibrational parameters of amide motions of peptide in different environments.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, Fujian, PR China.
| | | | | | | |
Collapse
|
3
|
Han C, Zhao J, Yang F, Wang J. Structural Dynamics of N-Propionyl-d-glucosamine Probed by Infrared Spectroscopies and Ab Initio Computations. J Phys Chem A 2013; 117:6105-15. [DOI: 10.1021/jp400096a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chen Han
- Beijing National Laboratory for Molecular Sciences,
Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, People’s
Republic of China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences,
Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, People’s
Republic of China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences,
Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, People’s
Republic of China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences,
Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, People’s
Republic of China
| |
Collapse
|
4
|
Ma X, Cai K, Wang J. Dynamical Structures of Glycol and Ethanedithiol Examined by Infrared Spectroscopy, Ab Initio Computation, and Molecular Dynamics Simulations. J Phys Chem B 2011; 115:1175-87. [DOI: 10.1021/jp107752a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaoyan Ma
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Kaicong Cai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Meng K, Wang J. Anharmonic overtone and combination states of glycine and two model peptides examined by vibrational self-consistent field theory. Phys Chem Chem Phys 2011; 13:2001-13. [DOI: 10.1039/c0cp01177k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|