1
|
Dutta S, Gellman AJ. Enantiomer surface chemistry: conglomerate versus racemate formation on surfaces. Chem Soc Rev 2018; 46:7787-7839. [PMID: 29165467 DOI: 10.1039/c7cs00555e] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Research on surface chirality is motivated by the need to develop functional chiral surfaces for enantiospecific applications. While molecular chirality in 3D has been the subject of study for almost two centuries, many aspects of 2D chiral surface chemistry have yet to be addressed. In 3D, racemic mixtures of chiral molecules tend to aggregate into racemate (molecularly heterochiral) crystals much more frequently than conglomerate (molecularly homochiral) crystals. Whether chiral adsorbates on surfaces preferentially aggregate into heterochiral rather than homochiral domains (2D crystals or clusters) is not known. In this review, we have made the first attempt to answer the following question based on available data: in 2D racemic mixtures adsorbed on surfaces, is there a clear preference for homochiral or heterochiral aggregation? The current hypothesis is that homochiral packing is preferred on surfaces; in contrast to 3D where heterochiral packing is more common. In this review, we present a simple hierarchical scheme to categorize the chirality of adsorbate-surface systems. We then review the body of work using scanning tunneling microscopy predominantly to study aggregation of racemic adsorbates. Our analysis of the existing literature suggests that there is no clear evidence of any preference for either homochiral or heterochiral aggregation at the molecular level by chiral and prochiral adsorbates on surfaces.
Collapse
Affiliation(s)
- Soham Dutta
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
2
|
Rieger A, Sax C, Bauert T, Wäckerlin C, Ernst KH. Chiral molecules adsorbed on a solid surface: Tartaric acid diastereomers and their surface explosion on Cu(111). Chirality 2018; 30:369-377. [DOI: 10.1002/chir.22819] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Alexandra Rieger
- Empa, Swiss Federal Laboratories for Materials Science and Technology; Dübendorf Switzerland
| | - Cédric Sax
- Empa, Swiss Federal Laboratories for Materials Science and Technology; Dübendorf Switzerland
| | - Tobias Bauert
- Empa, Swiss Federal Laboratories for Materials Science and Technology; Dübendorf Switzerland
| | - Christian Wäckerlin
- Empa, Swiss Federal Laboratories for Materials Science and Technology; Dübendorf Switzerland
| | - Karl-Heinz Ernst
- Empa, Swiss Federal Laboratories for Materials Science and Technology; Dübendorf Switzerland
- Department of Chemistry; University of Zurich; Zürich Switzerland
| |
Collapse
|
3
|
Varga K, Tannir S, Haynie BE, Leonard BM, Dzyuba SV, Kubelka J, Balaz M. CdSe Quantum Dots Functionalized with Chiral, Thiol-Free Carboxylic Acids: Unraveling Structural Requirements for Ligand-Induced Chirality. ACS NANO 2017; 11:9846-9853. [PMID: 28956912 DOI: 10.1021/acsnano.7b03555] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Functionalization of colloidal quantum dots (QDs) with chiral cysteine derivatives by phase-transfer ligand exchange proved to be a simple yet powerful method for the synthesis of chiral, optically active QDs regardless of their size and chemical composition. Here, we present induction of chirality in CdSe by thiol-free chiral carboxylic acid capping ligands (l- and d-malic and tartaric acids). Our circular dichroism (CD) and infrared experimental data showed how the presence of a chiral carboxylic acid capping ligand on the surface of CdSe QDs was necessary but not sufficient for the induction of optical activity in QDs. A chiral bis-carboxylic acid capping ligand needed to have three oxygen-donor groups during the phase-transfer ligand exchange to successfully induce chirality in CdSe. Intrinsic chirality of CdSe nanocrystals was not observed as evidenced by transmission electron microscopy and reverse phase-transfer ligand exchange with achiral 1-dodecanethiol. Density functional theory geometry optimizations and CD spectra simulations suggest an explanation for these observations. The tridentate binding via three oxygen-donor groups had an energetic preference for one of the two possible binding orientations on the QD (111) surface, leading to the CD signal. By contrast, bidentate binding was nearly equienergetic, leading to cancellation of approximately oppositely signed corresponding CD signals. The resulting induced CD of CdSe functionalized with chiral carboxylic acid capping ligands was the result of hybridization of the (achiral) QD and (chiral) ligand electronic states controlled by the ligand's absolute configuration and the ligand's geometrical arrangement on the QD surface.
Collapse
Affiliation(s)
- Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire , 46 College Road, Durham, New Hampshire 03824, United States
| | - Shambhavi Tannir
- Department of Chemistry, University of Wyoming , 1000 East University Avenue, Laramie, Wyoming 82071, United States
| | - Benjamin E Haynie
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire , 46 College Road, Durham, New Hampshire 03824, United States
| | - Brian M Leonard
- Department of Chemistry, University of Wyoming , 1000 East University Avenue, Laramie, Wyoming 82071, United States
| | - Sergei V Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University , Fort Worth, Texas 76129, United States
| | - Jan Kubelka
- Department of Chemistry, University of Wyoming , 1000 East University Avenue, Laramie, Wyoming 82071, United States
| | - Milan Balaz
- Underwood International College, Integrated Science and Engineering Division, Yonsei University , Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Morrow SM, Bissette AJ, Fletcher SP. Transmission of chirality through space and across length scales. NATURE NANOTECHNOLOGY 2017; 12:410-419. [PMID: 28474691 DOI: 10.1038/nnano.2017.62] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/09/2017] [Indexed: 05/26/2023]
Abstract
Chirality is a fundamental property and vital to chemistry, biology, physics and materials science. The ability to use asymmetry to operate molecular-level machines or macroscopically functional devices, or to give novel properties to materials, may address key challenges at the heart of the physical sciences. However, how chirality at one length scale can be translated to asymmetry at a different scale is largely not well understood. In this Review, we discuss systems where chiral information is translated across length scales and through space. A variety of synthetic systems involve the transmission of chiral information between the molecular-, meso- and macroscales. We show how fundamental stereochemical principles may be used to design and understand nanoscale chiral phenomena and highlight important recent advances relevant to nanotechnology. The survey reveals that while the study of stereochemistry on the nanoscale is a rich and dynamic area, our understanding of how to control and harness it and dial-up specific properties is still in its infancy. The long-term goal of controlling nanoscale chirality promises to be an exciting journey, revealing insight into biological mechanisms and providing new technologies based on dynamic physical properties.
Collapse
Affiliation(s)
- Sarah M Morrow
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Andrew J Bissette
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Stephen P Fletcher
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
5
|
Wang PP, Yu SJ, Govorov AO, Ouyang M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat Commun 2017; 8:14312. [PMID: 28148957 PMCID: PMC5296657 DOI: 10.1038/ncomms14312] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.
Collapse
Affiliation(s)
- Peng-peng Wang
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
| | - Shang-Jie Yu
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Ouyang
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
6
|
Xiao W, Ernst KH, Palotas K, Zhang Y, Bruyer E, Peng L, Greber T, Hofer WA, Scott LT, Fasel R. Microscopic origin of chiral shape induction in achiral crystals. Nat Chem 2016; 8:326-30. [DOI: 10.1038/nchem.2449] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 01/05/2016] [Indexed: 11/09/2022]
|
7
|
Adsorption-induced auto-amplification of enantiomeric excess on an achiral surface. Nat Chem 2015; 7:520-5. [DOI: 10.1038/nchem.2250] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022]
|
8
|
Abstract
Prochiral molecules locally induce a chiral restructuring of the Cu(110) surface that persists after removal of the molecules.
Collapse
Affiliation(s)
- Chrysanthi Karageorgaki
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- CH-8600 Dübendorf, Switzerland
| | - Karl-Heinz Ernst
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- CH-8600 Dübendorf, Switzerland
- Department of Chemistry
- University of Zurich
| |
Collapse
|
9
|
Seibel J, Allemann O, Siegel JS, Ernst KH. Chiral Conflict among Different Helicenes Suppresses Formation of One Enantiomorph in 2D Crystallization. J Am Chem Soc 2013; 135:7434-7. [DOI: 10.1021/ja402012j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Johannes Seibel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600
Dübendorf, Switzerland
| | - Oliver Allemann
- Department of Chemistry, University of Zurich, 8057 Zürich, Switzerland
| | - Jay S. Siegel
- Department of Chemistry, University of Zurich, 8057 Zürich, Switzerland
| | - Karl-Heinz Ernst
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600
Dübendorf, Switzerland
- Department of Chemistry, University of Zurich, 8057 Zürich, Switzerland
| |
Collapse
|
10
|
Contini G, Gori P, Ronci F, Colonna S, Palma A, Turchini S, Catone D, Prosperi T, Zema N. Two-dimensional molecular chirality transfer on metal surfaces. RENDICONTI LINCEI 2013. [DOI: 10.1007/s12210-013-0231-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
|