1
|
Osti NC, Jalarvo N, Mamontov E. Backscattering silicon spectrometer (BASIS): sixteen years in advanced materials characterization. MATERIALS HORIZONS 2024; 11:4535-4572. [PMID: 39162617 DOI: 10.1039/d4mh00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Quasielastic neutron scattering (QENS) is an experimental technique that can measure parameters of mobility, such as diffusion jump rate and jump length, as well as localized relaxations of chemical species (molecules, ions, and segments) at atomic and nanometer length scales. Due to the high penetrative power of neutrons and their sensitivity to neutron scattering cross-section of chemical species, QENS can effectively probe mobility inside most bulk materials. This review focuses on QENS experiments performed using a neutron backscattering silicon spectrometer (BASIS) to explore the dynamics in various materials and understand their structure-property relationship. BASIS is a time-of-flight near-backscattering inverted geometry spectrometer with very high energy resolution (approximately 0.0035 meV of full width at half maximum), allowing measurements of dynamics on nano to picosecond timescales. The science areas studied with BASIS are diverse, with a focus on soft matter topics, including traditional biological and polymer science experiments, as well as measurements of fluids ranging from simple hydrocarbons and aqueous solutions to relatively complex room-temperature ionic liquids and deep-eutectic solvents, either in the bulk state or confined. Additionally, hydrogen confined in various materials is routinely measured on BASIS. Other topics successfully investigated at BASIS include quantum fluids, spin glasses, and magnetism. BASIS has been in the user program since 2007 at the Spallation Neutron Source of the Oak Ridge National Laboratory, an Office of Science User Facility supported by the U.S. Department of Energy. Over the past sixteen years, BASIS has contributed to various scientific disciplines, exploring the structure and dynamics of many chemical species and their fabrication for practical applications. A comprehensive review of BASIS contributions and capabilities would be an asset to the materials science community, providing insights into employing the neutron backscattering technique for advanced materials characterization.
Collapse
Affiliation(s)
- Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Niina Jalarvo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
Liu S, Li R, Tyagi M, Akcora P. Confinement Effects in Dynamics of Ionic Liquids with Polymer-Grafted Nanoparticles. Chemphyschem 2022; 23:e202200219. [PMID: 35676199 DOI: 10.1002/cphc.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Indexed: 11/07/2022]
Abstract
Ionic liquid mixed with poly(methyl methacrylate)-grafted nanoparticle aggregates at low particle concentrations was shown to exhibit different dynamics and ionic conductivity than that of pure ionic liquid in our previous studies. In this work, we report on the quasi-elastic neutron scattering results on ionic liquid containing polymer-grafted nanoparticles at the higher particle concentration. The diffusivity of imidazolium (HMIM + ) cations of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM-TFSI) in the presence of poly(methyl methacrylate)-grafted iron oxide nanoparticles and the ionic conductivity of solutions were discussed through the confinement. Analysis of the elastic incoherent structure factor suggested the confinement radius decreased with the addition of grafted particles in HMIM-TFSI/solvent mixture, indicating the confinement that is induced by the high concentration of grafted particles, shrinks the HMIM-TFSI restricted volume. We further conjecture that this enhanced diffusivity occurs as a result of the local ordering of cations within aggregates of poly(methyl methacrylate)-grafted particles.
Collapse
Affiliation(s)
- Siqi Liu
- 1 Castle Point on Hudson, Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, McLean Hall 415, 07030, Hoboken, NJ, USA
| | - Ruhao Li
- 1 Castle Point on Hudson, Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, McLean Hall 415, 07030, Hoboken, NJ, USA
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, 100 Bureau Dr, 20899, Gaithersburg, MD, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, 20742, Maryland, MD, USA
| | - Pinar Akcora
- 1 Castle Point on Hudson, Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, McLean Hall 415, 07030, Hoboken, NJ, USA
| |
Collapse
|
3
|
Lundin F, Hansen HW, Adrjanowicz K, Frick B, Rauber D, Hempelmann R, Shebanova O, Niss K, Matic A. Pressure and Temperature Dependence of Local Structure and Dynamics in an Ionic Liquid. J Phys Chem B 2021; 125:2719-2728. [PMID: 33656344 PMCID: PMC8034775 DOI: 10.1021/acs.jpcb.1c00147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
A detailed understanding
of the local dynamics in ionic liquids
remains an important aspect in the design of new ionic liquids as
advanced functional fluids. Here, we use small-angle X-ray scattering
and quasi-elastic neutron spectroscopy to investigate the local structure
and dynamics in a model ionic liquid as a function of temperature
and pressure, with a particular focus on state points (P,T) where the macroscopic dynamics, i.e., conductivity,
is the same. Our results suggest that the initial step of ion transport
is a confined diffusion process, on the nanosecond timescale, where
the motion is restricted by a cage of nearest neighbors. This process
is invariant considering timescale, geometry, and the participation
ratio, at state points of constant conductivity, i.e., state points
of isoconductivity. The connection to the nearest-neighbor structure
is underlined by the invariance of the peak in the structure factor
corresponding to nearest-neighbor correlations. At shorter timescales,
picoseconds, two localized relaxation processes of the cation can
be observed, which are not directly linked to ion transport. However,
these processes also show invariance at isoconductivity. This points
to that the overall energy landscape in ionic liquids responds in
the same way to density changes and is mainly governed by the nearest-neighbor
interactions.
Collapse
Affiliation(s)
- Filippa Lundin
- Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Henriette Wase Hansen
- Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden.,Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark.,Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Karolina Adrjanowicz
- Insitute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Bernhard Frick
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Daniel Rauber
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Hempelmann
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | | | - Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Aleksandar Matic
- Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
4
|
Liu S, Liedel C, Tarakina NV, Osti NC, Akcora P. Dynamics of ionic liquids in the presence of polymer-grafted nanoparticles. NANOSCALE 2019; 11:19832-19841. [PMID: 31368472 DOI: 10.1039/c9nr04204k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We incorporated polymer-grafted nanoparticles into ionic and zwitterionic liquids to explore the solvation and confinement effects on their heterogeneous dynamics using quasi-elastic neutron scattering (QENS). 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM-TFSI) mixed with deuterated poly(methyl methacrylate) (d-PMMA)-grafted nanoparticles is studied to unravel how dynamic coupling between PMMA and HMIM-TFSI influence the fast and slow diffusion characteristics of the HMIM+ cations. The zwitterionic liquid, 1-butyl-3-methyl imidazole-2-ylidene borane (BMIM-BH3) is critically selected and mixed with PMMA-grafted nanoparticles for comparison in this work as its ions do not self-dissociate and it does not couple with PMMA through ion-dipole interactions as HMIM-TFSI does. We find that long-range unrestricted diffusion of HMIM+ cations is higher in well-dispersed particles than in aggregated particle systems, whereas the localized diffusion of HMIM+ is measured to be higher in close-packed particles. Translational diffusion dynamics of BMIM-BH3 is not influenced by any particle structures suggesting that zwitterions do not interact with PMMA. This difference between two ionic liquid types enables us to decouple polymer effects from the diffusion of ionic liquids, which is integral to understand the ionic transport mechanism in ionic liquids confined in polymer-grafted nanoparticle electrolytes.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | - Clemens Liedel
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Potsdam 14476, Germany
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Potsdam 14476, Germany
| | - Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Pinar Akcora
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| |
Collapse
|
5
|
Jafta CJ, Bridges C, Haupt L, Do C, Sippel P, Cochran MJ, Krohns S, Ohl M, Loidl A, Mamontov E, Lunkenheimer P, Dai S, Sun XG. Ion Dynamics in Ionic-Liquid-Based Li-Ion Electrolytes Investigated by Neutron Scattering and Dielectric Spectroscopy. CHEMSUSCHEM 2018; 11:3512-3523. [PMID: 30133183 DOI: 10.1002/cssc.201801321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/30/2018] [Indexed: 06/08/2023]
Abstract
A detailed understanding of the diffusion mechanisms of ions in pure and doped ionic liquids remains an important aspect in the design of new ionic-liquid electrolytes for energy storage. To gain more insight into the widely used imidazolium-based ionic liquids, the relationship between viscosity, ionic conductivity, diffusion coefficients, and reorientational dynamics in the ionic liquid 3-methyl-1-methylimidazolium bis(trifluoromethanesulfonyl)imide (DMIM-TFSI) with and without lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) was examined. The diffusion coefficients for the DMIM+ cation and the role of ion aggregates were investigated by using the quasielastic neutron scattering (QENS) and neutron spin echo techniques. Two diffusion mechanisms are observed for the DMIM+ cation with and without Li-TFSI, that is, translational and local. The data additionally suggest that Li+ ion transport along with ion aggregates, known as the vehicle mechanism, may play a significant role in the ion diffusion process. These dielectric-spectroscopy investigations in a broad temperature and frequency range reveal a typical α-β-relaxation scenario. The α relaxation mirrors the glassy freezing of the dipolar ions, and the β relaxation exhibits the signatures of a Johari-Goldstein relaxation. In contrast to the translational mode detected by neutron scattering, arising from the decoupled faster motion of the DMIM+ ions, the α relaxation is well coupled to the dc charge transport, that is, the average translational motion of all three ion species in the material. The local diffusion process detected by QENS is only weakly dependent on temperature and viscosity and can be ascribed to the typical fast dynamics of glass-forming liquids.
Collapse
Affiliation(s)
- Charl J Jafta
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Craig Bridges
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Leon Haupt
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Pit Sippel
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Malcolm J Cochran
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephan Krohns
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Michael Ohl
- Jülich Centre for Neutron Science, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alois Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Peter Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Sheng Dai
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xiao-Guang Sun
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
6
|
Dyatkin B, Osti NC, Gallegos A, Zhang Y, Mamontov E, Cummings PT, Wu J, Gogotsi Y. Electrolyte cation length influences electrosorption and dynamics in porous carbon supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Ferdeghini F, Berrod Q, Zanotti JM, Judeinstein P, Sakai VG, Czakkel O, Fouquet P, Constantin D. Nanostructuration of ionic liquids: impact on the cation mobility. A multi-scale study. NANOSCALE 2017; 9:1901-1908. [PMID: 28094396 DOI: 10.1039/c6nr07604a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
When probed at the macroscopic scale, Ionic Liquids (ILs) behave as highly dissociated (i.e. strong) electrolytes while, at the molecular scale, they show clear characteristics of weak ionic solutions. The multi-scale analysis we report in this paper reconciles these apparently at odds behaviors. We investigate by quasi-elastic neutron scattering (QENS) and neutron spin-echo (NSE), the nanometer/nanosecond dynamics of OMIM-BF4, an imidazolium-based IL showing strong nanostructuration. We also probe the same IL on the microscopic (μm and ms) scale by pulsed field gradient NMR. To interpret the neutron data, we introduce a new physical model to account for the dynamics of the side-chains and for the diffusion of the whole molecule. This model describes the observables over the whole and unprecedented investigated spatial ([0.15-1.65] Å-1) and time ([0.5-2000] ps) ranges. We arrive at a coherent and unified structural/dynamical description of the local cation dynamics: a localized motion within the IL nanometric domains is combined with a genuine long-range translational motion. The QENS, NSE and NMR experiments describe the same long-range translational process, but probed at different scales. The associated diffusion coefficients are more than one order of magnitude different. We show how this apparent discrepancy is a manifestation of the IL nanostructuration.
Collapse
Affiliation(s)
- Filippo Ferdeghini
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Quentin Berrod
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France. and Lawrence Berkeley National Laboratory, Energy Storage Group, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jean-Marc Zanotti
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Patrick Judeinstein
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France. and Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Victoria García Sakai
- ISIS neutron and Muon Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
| | | | - Peter Fouquet
- Institut Laue Langevin, 38042 Grenoble Cedex, France
| | - Doru Constantin
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
8
|
Osti NC, Van Aken KL, Thompson MW, Tiet F, Jiang DE, Cummings PT, Gogotsi Y, Mamontov E. Solvent Polarity Governs Ion Interactions and Transport in a Solvated Room-Temperature Ionic Liquid. J Phys Chem Lett 2017; 8:167-171. [PMID: 27966964 DOI: 10.1021/acs.jpclett.6b02587] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We explore the influence of the solvent dipole moment on cation-anion interactions and transport in 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl), [BMIM+][Tf2N-]. Free energy profiles derived from atomistic molecular dynamics (MD) simulations show a correlation of the cation-anion separation and the equilibrium depth of the potential of mean force with the dipole moment of the solvent. Correlations of the ion diffusivity with the dipole moment and the concentration of the solvent were further demonstrated by classical MD simulations. Quasi-elastic neutron scattering experiments with deuterated solvents reveal a complex picture of nanophase separation into the ionic liquid-rich and solvent-rich phases. The experiment corroborates the trend of concentration- and dipole moment-dependent enhancement of ion mobility by the solvent, as suggested by the simulations. Despite the considerable structural complexity of ionic liquid-solvent mixtures, we can rationalize and generalize the trends governing ionic transport in these complex electrolytes.
Collapse
Affiliation(s)
- Naresh C Osti
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory , PO Box 2008 MS6455, Oak Ridge, Tennessee 37831, United States
| | - Katherine L Van Aken
- Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Matthew W Thompson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University , 2201 West End Avenue, Nashville, Tennessee 37235, United States
| | - Felix Tiet
- Department of Chemical and Biomolecular Engineering, Vanderbilt University , 2201 West End Avenue, Nashville, Tennessee 37235, United States
| | - De-En Jiang
- Department of Chemistry, University of California , 900 University Avenue, Riverside, California 92521, United States
| | - Peter T Cummings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University , 2201 West End Avenue, Nashville, Tennessee 37235, United States
| | - Yury Gogotsi
- Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Eugene Mamontov
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory , PO Box 2008 MS6455, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
9
|
Russina O, Triolo A. Ionic Liquids and Neutron Scattering. NEUTRON SCATTERING - APPLICATIONS IN BIOLOGY, CHEMISTRY, AND MATERIALS SCIENCE 2017. [DOI: 10.1016/b978-0-12-805324-9.00004-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Affiliation(s)
- Shiguo Zhang
- College
of Materials Science and Engineering, Hunan University, Changsha 410082, China
- Center for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis & Selective Oxidation, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000 Lanzhou, China
| | - Jiaheng Zhang
- School
of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yan Zhang
- College
of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Youquan Deng
- Center for Green Chemistry and Catalysis, State Key Laboratory for Oxo Synthesis & Selective Oxidation, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, 730000 Lanzhou, China
| |
Collapse
|
11
|
Burankova T, Simeoni G, Hempelmann R, Mora Cardozo JF, Embs JP. Dynamic Heterogeneity and Flexibility of the Alkyl Chain in Pyridinium-Based Ionic Liquids. J Phys Chem B 2016; 121:240-249. [PMID: 27995787 DOI: 10.1021/acs.jpcb.6b10235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Changing the number of carbon atoms in the substituents of ionic liquids (ILs) is a way to shift the balance between Coulomb and van der Waals forces and, thus, to tune physicochemical properties. Here we address this topic on the microscopic level by employing quasielastic neutron scattering (QENS) and provide information about the stochastic ionic motions in the N-alkylpyridinium based ILs in a relatively expanded time range, from short time (subpicosecond) particle rattling to long time diffusive regime (hundreds of picoseconds). We have systematically investigated the effect of the alkyl chain length on the picosecond dynamics by employing partial deuteration of the samples and varying the number of carbon atoms in the alkyl substituent. The localized dynamics of the side groups have appeared to be enhanced for bulkier cations, which is opposite to the trend observed for the translational motion. This result highlights the role of the conformational flexibility of the alkyl group on the dynamical properties of ILs.
Collapse
Affiliation(s)
- Tatsiana Burankova
- Department of Physical Chemistry, Saarland University , Saarbrücken, Germany.,Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute , Villigen PSI, Switzerland
| | - Giovanna Simeoni
- Heinz Maier-Leibnitz Zentrum and Physics Department, Technical University of Munich , Garching, Germany
| | - Rolf Hempelmann
- Department of Physical Chemistry, Saarland University , Saarbrücken, Germany
| | - Juan F Mora Cardozo
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute , Villigen PSI, Switzerland
| | - Jan P Embs
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute , Villigen PSI, Switzerland
| |
Collapse
|
12
|
Dong K, Zhang S, Wang J. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem Commun (Camb) 2016; 52:6744-64. [PMID: 27042709 DOI: 10.1039/c5cc10120d] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ionic liquids (ILs) have many potential applications in the chemical industry. In order to understand ILs, their molecular details have been extensively investigated. Intuitively, electrostatic forces are solely important in ILs. However, experiments and calculations have provided strong evidence for the existence of H-bonds in ILs and their roles in the properties and applications of ILs. As a structure-directing force, H-bonds are responsible for ionic pairing, stacking and self-assembling. Their geometric structure, interaction energy and electronic configuration in the ion-pairs of imidazolium-based ILs and protic ionic liquids (PILs) show a great number of differences compared to conventional H-bonds. In particular, their cooperation with electrostatic, dispersion and π interactions embodies the physical nature of H-bonds in ILs, which anomalously influences their properties, leading to a decrease in their melting points and viscosities and thus fluidizing them. Using ILs as catalysts and solvents, many reactions can be activated by the presence of H-bonds, which reduce the reaction barriers and stabilize the transition states. In the dissolution of lignocellulosic biomass by ILs, H-bonds exhibit a most important role in disrupting the H-bonding network of cellulose and controlling microscopic ordering into domains. In this article, a critical review is presented regarding the structural features of H-bonds in ILs and PILs, the correlation between H-bonds and the properties of ILs, and the roles of H-bonds in typical reactions.
Collapse
Affiliation(s)
- Kun Dong
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | |
Collapse
|
13
|
Nowicki J, Muszyński M, Mikkola JP. Ionic liquids derived from organosuperbases: en route to superionic liquids. RSC Adv 2016. [DOI: 10.1039/c5ra23616a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This is a comprehensive review of various task-specific ionic liquids derived from TMG, TBD, DBU, DBN and other organosuperbases.
Collapse
Affiliation(s)
- Janusz Nowicki
- Institute of Heavy Organic Synthesis “Blachownia”
- 47-225 Kędzierzyn-Koźle
- Poland
| | - Marcin Muszyński
- Institute of Heavy Organic Synthesis “Blachownia”
- 47-225 Kędzierzyn-Koźle
- Poland
| | - Jyri-Pekka Mikkola
- Technical Chemistry
- Department of Chemistry
- Chemical-Biological Centre
- Umeå University
- Umeå
| |
Collapse
|
14
|
Burankova T, Hempelmann R, Fossog V, Ollivier J, Seydel T, Embs JP. Proton Diffusivity in the Protic Ionic Liquid Triethylammonium Triflate Probed by Quasielastic Neutron Scattering. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04000] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatsiana Burankova
- Department
of Physical Chemistry, Saarland University, Saarbrücken, 66123, Germany
- Laboratory
for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen
PSI, Villigen 5232, Switzerland
| | - Rolf Hempelmann
- Department
of Physical Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - Verlaine Fossog
- Department
of Physical Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | | | - Tilo Seydel
- Institut Laue-Langevin, Grenoble, 38000, France
| | - Jan P. Embs
- Laboratory
for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen
PSI, Villigen 5232, Switzerland
| |
Collapse
|
15
|
Wagle DV, Baker GA, Mamontov E. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent. J Phys Chem Lett 2015; 6:2924-8. [PMID: 26267182 DOI: 10.1021/acs.jpclett.5b01192] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we find that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are more spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of such differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).
Collapse
Affiliation(s)
- Durgesh V Wagle
- †Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A Baker
- †Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Eugene Mamontov
- ‡Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
16
|
Burankova T, Hempelmann R, Wildes A, Embs JP. Collective Ion Diffusion and Localized Single Particle Dynamics in Pyridinium-Based Ionic Liquids. J Phys Chem B 2014; 118:14452-60. [DOI: 10.1021/jp5092416] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tatsiana Burankova
- Department
of Physical Chemistry, Saarland University, Saarbrücken, 66123, Germany
- Laboratory
for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, 5232, Switzerland
| | - Rolf Hempelmann
- Department
of Physical Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | | | - Jan P. Embs
- Laboratory
for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, 5232, Switzerland
| |
Collapse
|
17
|
The dynamics of cations in pyridinium-based ionic liquids by means of quasielastic- and inelastic neutron scattering. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Mamontov E. Boiling Temperature As a Scaling Parameter for the Microscopic Relaxation Dynamics in Molecular Liquids. J Phys Chem B 2013; 117:9501-7. [DOI: 10.1021/jp404899z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eugene Mamontov
- Chemical & Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
19
|
Mamontov E, Ohl M. Slow dynamics of water molecules in an aqueous solution of lithium chloride probed by neutron spin-echo. Phys Chem Chem Phys 2013; 15:10732-9. [PMID: 23689686 DOI: 10.1039/c3cp51355f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous solutions of lithium chloride are uniquely similar to pure water in the parameters such as glass transition temperature, Tg, yet they could be supercooled without freezing down to below 200 K even in the bulk state. This provides advantageous opportunity to study low-temperature dynamics of water molecules in water-like environment in the bulk rather than nano-confined state. Using high-resolution neutron spin-echo data, we argue that the critical temperature, Tc, which is also common between lithium chloride aqueous solutions and pure water, is associated with the split of a secondary relaxation from the main structural relaxation on cooling down. Our results do not allow distinguishing between a well-defined separate secondary relaxation process and the "excess wing" scenario, in which the temperature dependence of the secondary relaxation follows the main relaxation. Importantly, however, in either of these scenarios the secondary relaxation is associated with density-density fluctuations, measurable in a neutron scattering experiment. Neutron scattering could be the only experimental technique with the capability of providing information on the spatial characteristics of the secondary relaxation through the dependence of the signal on the scattering momentum transfer. We propose a simple method for such analysis.
Collapse
Affiliation(s)
- E Mamontov
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6473, USA.
| | | |
Collapse
|
20
|
Chathoth SM, Anjos DM, Mamontov E, Brown GM, Overbury SH. Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering. J Phys Chem B 2012; 116:7291-5. [DOI: 10.1021/jp302155a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suresh M. Chathoth
- Chemical and Engineering Materials
Division, Neutron Scattering Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Daniela M. Anjos
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, United States
| | - Eugene Mamontov
- Chemical and Engineering Materials
Division, Neutron Scattering Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gilbert M. Brown
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, United States
| | - Steven H. Overbury
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, United States
| |
Collapse
|
21
|
Mamontov E. Diffusion in confinement as a microscopic relaxation mechanism in glass-forming liquids. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.01.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Mamontov E, Chu XQ. Water–protein dynamic coupling and new opportunities for probing it at low to physiological temperatures in aqueous solutions. Phys Chem Chem Phys 2012; 14:11573-88. [DOI: 10.1039/c2cp41443k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Hamm SC, Shankaran R, Korampally V, Bok S, Praharaj S, Baker GA, Robertson JD, Lee BD, Sengupta S, Gangopadhyay K, Gangopadhyay S. Sputter-deposition of silver nanoparticles into ionic liquid as a sacrificial reservoir in antimicrobial organosilicate nanocomposite coatings. ACS APPLIED MATERIALS & INTERFACES 2012; 4:178-84. [PMID: 22235768 DOI: 10.1021/am2012273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a new approach for fabricating robust, regenerable antimicrobial coatings containing an ionic liquid (IL) phase incorporating silver nanoparticles (AgNPs) as a reservoir for Ag(0)/Ag(+) species within sol-gel-derived nanocomposite films integrating organosilicate nanoparticles. The IL serves as an ultralow volatility (vacuum-compatible) liquid target, allowing for the direct deposition and dispersion of a high-density AgNP "ionosol" following conventional sputtering techniques. Two like-anion ILs were investigated in this work: methyltrioctylammonium bis(trifluoromethylsulfonyl)imide, [N(8881)][Tf(2)N], and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [emim][Tf(2)N]. Silver ionosols derived from these two ILs were incorporated into silica-based sol-gel films and the resultant antimicrobial activity evaluated against Pseudomonas aeruginosa bacteria. Imaging of the surface morphologies of the as-prepared films established a link between an open macroporous film architecture and the observation of high activity. Nanocomposites based on [N(8881)][Tf(2)N] displayed excellent antimicrobial activity against P. aeruginosa over multiple cycles, reducing cell viability by 6 log units within 4 h of contact. Surprisingly, similar films prepared from [emim][Tf(2)N] presented negligible antimicrobial activity, an observation we attribute to the differing abilities of these IL cations to infiltrate the cell wall, regulating the influx of silver ions to the bacterium's interior.
Collapse
Affiliation(s)
- Steven C Hamm
- Department of Electrical and Computer Engineering, University of Missouri, Engineering Building West, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Ionic liquids (ILs), a special group of classical molten salts, are widely used in various fields of science. Historically, researchers have tested ILs out of curiosity or to improve a specific property in a particular system in many areas of chemistry or materials science. However, today, ILs are far from being simple chemical curiosities and sit at the center of various green industrial innovation processes, where they play important roles in materials extraction, reactive catalytic supports, spatial devices, and biotransformations. In this Account, we describe a journey into a nanostructured universe to better understand the unique properties of ionic liquids and their modern applications. Because molten salts have been known for centuries and have found limited uses, we try to explain why modern nonaqueous ILs deserve increased interest and curiosity. We discuss the characteristics that distinguish modern nonaqueous ILs and compare them with classical molten salts. One of the main differences between room temperature ILs, especially those based on imidazolium cations, and simple molten salts, is the molecular asymmetry built into at least one of the ions. This asymmetry in modern, nonaqueous ILs opposes the strong charge ordering due to ionic interactions that normally would cause the system to crystallize. In addition, the presence of a cooperative network of hydrogen bonds between the cations and anions induces structural directionality (the entropic effect). Therefore, modern ILs form preorganized structures, mainly through hydrogen bonding, that induce structural directionality. In contrast, classical salts form aggregates only through ionic bonds. In other words, weak interactions order the structures in modern ILs while charges order the structure within classical salts. ILs cannot be regarded as merely homogeneous solvents. In fact, ILs form extended hydrogen-bond networks with polar and nonpolar nano domains and therefore are by definition "supramolecular" fluids. Thus, ILs are better described as hydrogen-bonded polymeric supramolecules of the type [(DAI)(m)(X)(m_n))](n+)[(DAI)(m_n)(X)(x))](n-). This structural pattern is a general trend for both the solid and the liquid phase and is apparently maintained to a large extent even in the gas phase. This structural organization of ILs can be used as entropic drivers (the "IL effect") for the preparation of well-defined nanoscale structures with extended order, either in the bulk phase or at the gas/vacuum interface.
Collapse
Affiliation(s)
- Jairton Dupont
- Laboratory of Molecular Catalysis, Institute of Chemistry, UFRGS, Av. Bento Gonçalves, 9500 Porto Alegre 91501-970 RS, Brazil
| |
Collapse
|