1
|
Peschel MT, Kussmann J, Ochsenfeld C, de Vivie-Riedle R. Simulation of the non-adiabatic dynamics of an enone-Lewis acid complex in an explicit solvent. Phys Chem Chem Phys 2024; 26:23256-23263. [PMID: 39193656 DOI: 10.1039/d4cp02492c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Unlocking the full potential of Lewis acid catalysis for photochemical transformations requires a comprehensive understanding of the ultrafast dynamics of substrate-Lewis acid complexes. In a previous article [Peschel et al., Angew. Chem. Int. Ed., 2021, 60, 10155], time-resolved spectroscopy supported by static calculations revealed that the Lewis acid remains attached during the relaxation of the model complex cyclohexenone-BF3. In contrast to the experimental observation, surface-hopping dynamics in the gas phase predicted ultrafast heterolytic dissociation. We attributed the discrepancy to missing solvent interactions. Thus, in this work, we present an interface between the SHARC and FermiONs++ program packages, which enables us to investigate the ultrafast dynamics of cyclohexenone-BF3 in an explicit solvent environment. Our simulations demonstrate that the solvent prevents the dissociation of the complex, leading to an intriguing dissociation-reassociation mechanism. Comparing the dynamics with and without triplet states highlights their role in the relaxation process and shows that the Lewis acid inhibits intersystem crossing. These findings provide a clear picture of the relaxation process, which may aid in designing future Lewis acid catalysts for photochemical applications. They underscore that an explicit solvent model is required to describe relaxation processes in weakly bound states, as energy transfer to the solvent is crucial for the system to reach its minimum geometries.
Collapse
Affiliation(s)
- Martin T Peschel
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| | - Jörg Kussmann
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Butenandtstr. 5-13, D-81377 Munich, Germany.
| |
Collapse
|
2
|
Huang H, Peng J, Zhang Y, Gu FL, Lan Z, Xu C. The development of the QM/MM interface and its application for the on-the-fly QM/MM nonadiabatic dynamics in JADE package: Theory, implementation, and applications. J Chem Phys 2024; 160:234101. [PMID: 38884395 DOI: 10.1063/5.0215036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Understanding the nonadiabatic dynamics of complex systems is a challenging task in computational photochemistry. Herein, we present an efficient and user-friendly quantum mechanics/molecular mechanics (QM/MM) interface to run on-the-fly nonadiabatic dynamics. Currently, this interface consists of an independent set of codes designed for general-purpose use. Herein, we demonstrate the ability and feasibility of the QM/MM interface by integrating it with our long-term developed JADE package. Tailored to handle nonadiabatic processes in various complex systems, especially condensed phases and protein environments, we delve into the theories, implementations, and applications of on-the-fly QM/MM nonadiabatic dynamics. The QM/MM approach is established within the framework of the additive QM/MM scheme, employing electrostatic embedding, link-atom inclusion, and charge-redistribution schemes to treat the QM/MM boundary. Trajectory surface-hopping dynamics are facilitated using the fewest switches algorithm, encompassing classical and quantum treatments for nuclear and electronic motions, respectively. Finally, we report simulations of nonadiabatic dynamics for two typical systems: azomethane in water and the retinal chromophore PSB3 in a protein environment. Our results not only illustrate the power of the QM/MM program but also reveal the important roles of environmental factors in nonadiabatic processes.
Collapse
Affiliation(s)
- Haiyi Huang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yulin Zhang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
3
|
Koga M, Kang DH, Heim ZN, Meyer P, Erickson BA, Haldar N, Baradaran N, Havenith M, Neumark DM. Extreme ultraviolet time-resolved photoelectron spectroscopy of adenine, adenosine and adenosine monophosphate in a liquid flat jet. Phys Chem Chem Phys 2024; 26:13106-13117. [PMID: 38629206 DOI: 10.1039/d4cp00856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Time-resolved photoelectron spectroscopy using an extreme-ultraviolet (XUV) probe pulse was used to investigate the UV photoinduced dynamics of adenine (Ade), adenosine (Ado), and adenosine-5-monophosphate (AMP) in a liquid water jet. In contrast to previous studies using UV probe pulses, the XUV pulse at 21.7 eV can photoionize all excited states of a molecule, allowing for full relaxation pathways to be addressed after excitation at 4.66 eV. This work was carried out using a gas-dynamic flat liquid jet, resulting in considerably enhanced signal compared to a cylindrical jet. All three species decay on multiple time scales that are assigned based on their decay associated spectra; the fastest decay of ∼100 fs is assigned to ππ* decay to the ground state, while a smaller component with a lifetime of ∼500 fs is attributed to the nπ* state. An additional slower channel in Ade is assigned to the 7H Ade conformer, as seen previously. This work demonstrates the capability of XUV-TRPES to disentangle non-adiabatic dynamics in an aqueous solution in a state-specific manner and represents the first identification of the nπ* state in the relaxation dynamics of adenine and its derivatives.
Collapse
Affiliation(s)
- Masafumi Koga
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Do Hyung Kang
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Zachary N Heim
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Philipp Meyer
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801, Germany
| | - Blake A Erickson
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Neal Haldar
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Negar Baradaran
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801, Germany
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Zhu Y, Peng J, Kang X, Xu C, Lan Z. The principal component analysis of the ring deformation in the nonadiabatic surface hopping dynamics. Phys Chem Chem Phys 2022; 24:24362-24382. [PMID: 36178471 DOI: 10.1039/d2cp03323b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The analysis of the leading active molecular motions in the on-the-fly trajectory surface hopping simulation provides the essential information to understand the geometric evolution in nonadiabatic dynamics. When the ring deformation is involved, the identification of the key active coordinates becomes challenging. A "hierarchical" protocol based on the dimensionality reduction and clustering approaches is proposed for the automatic analysis of the ring deformation in the nonadiabatic molecular dynamics. The representative system keto isocytosine is taken as the prototype to illustrate this protocol. The results indicate that the current hierarchical analysis protocol is a powerful way to clearly clarify both the major and minor active molecular motions of the ring distortion in nonadiabatic dynamics.
Collapse
Affiliation(s)
- Yifei Zhu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China. .,MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.,School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xu Kang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China. .,MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China. .,MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China. .,MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Mandal S, Srinivasan V. Rationalizing the Unexpected Sensitivity in Excited State Lifetimes of Adenine to Tautomerization by Nonadiabatic Molecular Dynamics. J Phys Chem B 2022; 126:7077-7087. [PMID: 36083211 DOI: 10.1021/acs.jpcb.2c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The remarkable photostability of canonical nucleobases makes them ideal building blocks for DNA and RNA. Even minor structural changes are expected to lead to drastic alteration of their subpicosecond excited state lifetimes. However, it is interesting to note that while the 9H- and 7H-amino tautomers of adenine possess drastically different lifetimes, 9H- and 7H-keto guanine possess similar excited state lifetimes. With an aim to explain this unexpected difference in sensitivity of lifetimes to tautomerization, we have investigated the excited state relaxation mechanism of UV-excited adenine and guanine tautomers using surface hopping based nonadiabatic molecular dynamics. We find that internal conversion in both guanine tautomers is almost barrierless while both adenine tautomers encounter significant barriers before they can deactivate. Moreover, the major deactivation channel (C2-puckering) in 9H-amino adenine is overall more efficient than the one (C6-puckering) in the 7H-amino form. We trace this difference to the frequent rotation of the amino group which disrupts its conjugation with the heterocyclic ring thereby reducing the strength of nonadiabatic coupling and, hence, delaying internal conversion.
Collapse
Affiliation(s)
- Satyajit Mandal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Varadharajan Srinivasan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
6
|
Cofer-Shabica DV, Menger MFSJ, Ou Q, Shao Y, Subotnik JE, Faraji S. INAQS, a Generic Interface for Nonadiabatic QM/MM Dynamics: Design, Implementation, and Validation for GROMACS/Q-CHEM simulations. J Chem Theory Comput 2022; 18:4601-4614. [PMID: 35901266 DOI: 10.1021/acs.jctc.2c00204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate description of large molecular systems in complex environments remains an ongoing challenge for the field of computational chemistry. This problem is even more pronounced for photoinduced processes, as multiple excited electronic states and their corresponding nonadiabatic couplings must be taken into account. Multiscale approaches such as hybrid quantum mechanics/molecular mechanics (QM/MM) offer a balanced compromise between accuracy and computational burden. Here, we introduce an open-source software package (INAQS) for nonadiabatic QM/MM simulations that bridges the sampling capabilities of the GROMACS MD package and the excited-state infrastructure of the Q-CHEM electronic structure software. The interface is simple and can be adapted easily to other MD codes. The code supports a variety of different trajectory-based molecular dynamics, ranging from Born-Oppenheimer to surface hopping dynamics. To illustrate the power of this combination, we simulate electronic absorption spectra, free-energy surfaces along a reaction coordinate, and the excited-state dynamics of 1,3-cyclohexadiene in solution.
Collapse
Affiliation(s)
- D Vale Cofer-Shabica
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Maximilian F S J Menger
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Qi Ou
- AI for Science Institute, Beijing 100080, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
7
|
Valverde D, Mai S, Canuto S, Borin AC, González L. Ultrafast Intersystem Crossing Dynamics of 6-Selenoguanine in Water. JACS AU 2022; 2:1699-1711. [PMID: 35911449 PMCID: PMC9327080 DOI: 10.1021/jacsau.2c00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rationalizing the photochemistry of nucleobases where an oxygen is replaced by a heavier atom is essential for applications that exploit near-unity triplet quantum yields. Herein, we report on the ultrafast excited-state deactivation mechanism of 6-selenoguanine (6SeGua) in water by combining nonadiabatic trajectory surface-hopping dynamics with an electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) scheme. We find that the predominant relaxation mechanism after irradiation starts on the bright singlet S2 state that converts internally to the dark S1 state, from which the population is transferred to the triplet T2 state via intersystem crossing and finally to the lowest T1 state. This S2 → S1 → T2 → T1 deactivation pathway is similar to that observed for the lighter 6-thioguanine (6tGua) analogue, but counterintuitively, the T1 lifetime of the heavier 6SeGua is shorter than that of 6tGua. This fact is explained by the smaller activation barrier to reach the T1/S0 crossing point and the larger spin-orbit couplings of 6SeGua compared to 6tGua. From the dynamical simulations, we also calculate transient absorption spectra (TAS), which provide two time constants (τ1 = 131 fs and τ2 = 191 fs) that are in excellent agreement with the experimentally reported value (τexp = 130 ± 50 fs) (Farrel et al. J. Am. Chem. Soc. 2018, 140, 11214). Intersystem crossing itself is calculated to occur with a time scale of 452 ± 38 fs, highlighting that the TAS is the result of a complex average of signals coming from different nonradiative processes and not intersystem crossing alone.
Collapse
Affiliation(s)
- Danillo Valverde
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo CEP 05508-000, Brazil
- Institute
of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo CEP 05508-090, Brazil
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| | - Sylvio Canuto
- Institute
of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo CEP 05508-090, Brazil
| | - Antonio Carlos Borin
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo CEP 05508-000, Brazil
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| |
Collapse
|
8
|
Xie BB, Jia PK, Wang KX, Chen WK, Liu XY, Cui G. Generalized Ab Initio Nonadiabatic Dynamics Simulation Methods from Molecular to Extended Systems. J Phys Chem A 2022; 126:1789-1804. [PMID: 35266391 DOI: 10.1021/acs.jpca.1c10195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonadiabatic dynamics simulation has become a powerful tool to describe nonadiabatic effects involved in photophysical processes and photochemical reactions. In the past decade, our group has developed generalized trajectory-based ab initio surface-hopping (GTSH) dynamics simulation methods, which can be used to describe a series of nonadiabatic processes, such as internal conversion, intersystem crossing, excitation energy transfer and charge transfer of molecular systems, and photoinduced nonadiabatic carrier dynamics of extended systems with and without spin-orbit couplings. In this contribution, we will first give a brief introduction to our recently developed methods and related numerical implementations at different computational levels. Later, we will present some of our latest applications in realistic systems, which cover organic molecules, biological proteins, organometallic compounds, periodic organic and inorganic materials, etc. Final discussion is given to challenges and outlooks of ab initio nonadiabatic dynamics simulations.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Pei-Ke Jia
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Ke-Xin Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, Sichuan, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
9
|
Santoro F, Green JA, Martinez-Fernandez L, Cerezo J, Improta R. Quantum and semiclassical dynamical studies of nonadiabatic processes in solution: achievements and perspectives. Phys Chem Chem Phys 2021; 23:8181-8199. [PMID: 33875988 DOI: 10.1039/d0cp05907b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We concisely review the main methodological approaches to model nonadiabatic dynamics in isotropic solutions and their applications. Three general classes of models are identified as the most used to include solvent effects in the simulations. The first model describes the solvent as a set of harmonic collective modes coupled to the solute degrees of freedom, and the second as a continuum, while the third explicitly includes solvent molecules in the calculations. The issues related to the use of these models in semiclassical and quantum dynamical simulations are discussed, as well as the main limitations and perspectives of each approach.
Collapse
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - James A Green
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| |
Collapse
|
10
|
Wohlgemuth M, Mitrić R. Excitation energy transport in DNA modelled by multi-chromophoric field-induced surface hopping. Phys Chem Chem Phys 2020; 22:16536-16551. [DOI: 10.1039/d0cp02255a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Revealing the extended excited state lifetime due to excitation energy transport in DNA by multi-chromophoric field-induced surface-hopping (McFISH).
Collapse
Affiliation(s)
- Matthias Wohlgemuth
- Institut für Physikalische und Theoretische Chemie
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| |
Collapse
|
11
|
Peng J, Xie Y, Hu D, Lan Z. Performance of trajectory surface hopping method in the treatment of ultrafast intersystem crossing dynamics. J Chem Phys 2019; 150:164126. [PMID: 31042919 DOI: 10.1063/1.5079426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We carried out extensive studies to examine the performance of the fewest-switches surface hopping method in the description of the ultrafast intersystem crossing dynamic of various singlet-triplet (S-T) models by comparison with the results of the exact full quantum dynamics. Different implementation details and some derivative approaches were examined. As expected, it is better to perform the trajectory surface hopping calculations in the spin-adiabatic representation or by the local diabatization approach, instead of in the spin-diabatic representation. The surface hopping method provides reasonable results for the short-time dynamics in the S-T model with weak spin-orbital coupling (diabatic coupling), although it does not perform well in the models with strong spin-orbital coupling (diabatic coupling). When the system accesses the S-T potential energy crossing with rather high kinetic energy, the trajectory surface hopping method tends to produce a good description of the nonadiabatic intersystem crossing dynamics. The impact of the decoherence correction on the performance of the trajectory surface hopping is system dependent. It improves the result accuracy in many cases, while its influence may also be minor for other cases.
Collapse
Affiliation(s)
- Jiawei Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Deping Hu
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
12
|
Wu X, Ehrmaier J, Sobolewski AL, Karsili TNV, Domcke W. Mechanisms of photoreactivity in hydrogen-bonded adenine-H 2O complexes. Phys Chem Chem Phys 2019; 21:14238-14249. [PMID: 30543228 DOI: 10.1039/c8cp05305g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms of photoinduced reactions of adenine with water molecules in hydrogen-bonded adenine-water complexes were investigated with ab initio wave-function-based electronic-structure calculations. Two excited-state electron/proton transfer reaction mechanisms have been characterized: H-atom abstraction from water by photoexcited adenine as well as H-atom transfer from photoexcited adenine or the (adenine+H) radical to water. In the water-to-adenine H-atom transfer reaction, an electron from one of the p orbitals of the water molecule fills the hole in the n (π) orbital of the nπ* (ππ*) excited state of adenine, resulting in a charge-separated electronic state. The electronic charge separation is neutralized by the transfer of a proton from the water molecule to adenine, resulting in the (adenine+H)OH biradical in the electronic ground state. In the adenine-to-water H-atom transfer reaction, πσ* states localized at the acidic sites of adenine provide the mechanism for the photoejection of an electron from adenine, which is followed by proton transfer to the hydrogen-bonded water molecule, resulting in the (adenine-H)H3O biradical. The energy profiles of the photoreactions have been computed as relaxed scans with the ADC(2) electronic-structure method. These reactions, which involve the reactivity of adenine with hydrogen-bonded water molecules, compete with the well-established intrinsic excited-state deactivation mechanisms of adenine via ring-puckering or ring-opening conical intersections. By providing additional decay channels, the electron/proton exchange reactions with water can account for the observed significantly shortened excited-state lifetime of adenine in aqueous environments. These findings indicate that adenine possibly was not only a photostabilizer at the beginning of life, but also a primordial photocatalyst for water splitting.
Collapse
Affiliation(s)
- Xiuxiu Wu
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany.
| | | | | | | | | |
Collapse
|
13
|
Khani SK, Faber R, Santoro F, Hättig C, Coriani S. UV Absorption and Magnetic Circular Dichroism Spectra of Purine, Adenine, and Guanine: A Coupled Cluster Study in Vacuo and in Aqueous Solution. J Chem Theory Comput 2018; 15:1242-1254. [DOI: 10.1021/acs.jctc.8b00930] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Karbalaei Khani
- Arbeitsgruppe Quantenchemie, Ruhr-Universität, Bochum D-44780, Germany
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Rasmus Faber
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organo-Metallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Christof Hättig
- Arbeitsgruppe Quantenchemie, Ruhr-Universität, Bochum D-44780, Germany
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Stange UC, Temps F. Ultrafast electronic deactivation of UV-excited adenine and its ribo- and deoxyribonucleosides and -nucleotides: A comparative study. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Marian CM, Heil A, Kleinschmidt M. The DFT/MRCI method. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1394] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christel M. Marian
- Institute of Theoretical and Computational Chemistry Heinrich Heine Universität Düsseldorf Düsseldorf
| | - Adrian Heil
- Institute of Theoretical and Computational Chemistry Heinrich Heine Universität Düsseldorf Düsseldorf
| | - Martin Kleinschmidt
- Institute of Theoretical and Computational Chemistry Heinrich Heine Universität Düsseldorf Düsseldorf
| |
Collapse
|
16
|
Williams HL, Erickson BA, Neumark DM. Time-resolved photoelectron spectroscopy of adenosine and adenosine monophosphate photodeactivation dynamics in water microjets. J Chem Phys 2018; 148:194303. [PMID: 30307253 DOI: 10.1063/1.5027258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The excited state relaxation dynamics of adenosine and adenosine monophosphate were studied at multiple excitation energies using femtosecond time-resolved photoelectron spectroscopy in a liquid water microjet. At pump energies of 4.69-4.97 eV, the lowest ππ* excited state, S1, was accessed and its decay dynamics were probed via ionization at 6.20 eV. By reversing the role of the pump and probe lasers, a higher-lying ππ* state was excited at 6.20 eV and its time-evolving photoelectron spectrum was monitored at probe energies of 4.69-4.97 eV. The S1 ππ* excited state was found to decay with a lifetime ranging from ∼210 to 250 fs in adenosine and ∼220 to 250 fs in adenosine monophosphate. This lifetime drops with increasing pump photon energy. Signal from the higher-lying ππ* excited state decayed on a time scale of ∼320 fs and was measureable only in adenosine monophosphate.
Collapse
Affiliation(s)
- Holly L Williams
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Blake A Erickson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
17
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
18
|
Liu J, Koslowski A, Thiel W. Analytic gradient and derivative couplings for the spin-flip extended configuration interaction singles method: Theory, implementation, and application to proton transfer. J Chem Phys 2018; 148:244108. [DOI: 10.1063/1.5037081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jie Liu
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Axel Koslowski
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Crespo-Otero R, Barbatti M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics. Chem Rev 2018; 118:7026-7068. [DOI: 10.1021/acs.chemrev.7b00577] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | |
Collapse
|
20
|
Liu J, Thiel W. An efficient implementation of semiempirical quantum-chemical orthogonalization-corrected methods for excited-state dynamics. J Chem Phys 2018; 148:154103. [DOI: 10.1063/1.5022466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jie Liu
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
21
|
Affiliation(s)
- Juan J. Nogueira
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Wien, Austria;,
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Wien, Austria;,
| |
Collapse
|
22
|
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Pola M, Kochman MA, Picchiotti A, Prokhorenko VI, Miller RJD, Thorwart M. Linear photoabsorption spectra and vertical excitation energies of microsolvated DNA nucleobases in aqueous solution. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Employing density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations in combination with the semiclassical nuclear ensemble method, we have simulated the photoabsorption spectra of the four canonical DNA nucleobases in aqueous solution. In order to model the effects of solvation, for each nucleobase, a number of solvating water molecules were explicitly included in the simulations, and additionally, the bulk solvent was represented by a continuous polarizable medium. We find that the effect of the solvation shell in general is significant, and its inclusion improves the realism of the spectral simulations. The involvement of lone electron pairs in the hydrogen bonding with the solvating water molecules has the effect of systematically increasing the energies of vertical excitation into the [Formula: see text]-type states. Apart from a systematic blue shift of around [Formula: see text][Formula: see text]eV observed in the absorption peaks, the calculated photoabsorption spectra reproduce the measured ones with good accuracy. The photoabsorption spectra are dominated by excited states with [Formula: see text] and partial [Formula: see text] character. No low-energy charge transfer states are observed with the use of the CAM-B3LYP and M06-2X functionals.
Collapse
Affiliation(s)
- Martina Pola
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michal A. Kochman
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alessandra Picchiotti
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Valentyn I. Prokhorenko
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R. J. Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
24
|
Marquetand P, Nogueira JJ, Mai S, Plasser F, González L. Challenges in Simulating Light-Induced Processes in DNA. Molecules 2016. [PMCID: PMC6155660 DOI: 10.3390/molecules22010049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this contribution, we give a perspective on the main challenges in performing theoretical simulations of photoinduced phenomena within DNA and its molecular building blocks. We distinguish the different tasks that should be involved in the simulation of a complete DNA strand subject to UV irradiation: (i) stationary quantum chemical computations; (ii) the explicit description of the initial excitation of DNA with light; (iii) modeling the nonadiabatic excited state dynamics; (iv) simulation of the detected experimental observable; and (v) the subsequent analysis of the respective results. We succinctly describe the methods that are currently employed in each of these steps. While for each of them, there are different approaches with different degrees of accuracy, no feasible method exists to tackle all problems at once. Depending on the technique or combination of several ones, it can be problematic to describe the stacking of nucleobases, bond breaking and formation, quantum interferences and tunneling or even simply to characterize the involved wavefunctions. It is therefore argued that more method development and/or the combination of different techniques are urgently required. It is essential also to exercise these new developments in further studies on DNA and subsystems thereof, ideally comprising simulations of all of the different components that occur in the corresponding experiments.
Collapse
|
25
|
Du L, Lan Z. An On-the-Fly Surface-Hopping Program JADE for Nonadiabatic Molecular Dynamics of Polyatomic Systems: Implementation and Applications. J Chem Theory Comput 2016; 11:1360-74. [PMID: 26574348 DOI: 10.1021/ct501106d] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).
Collapse
Affiliation(s)
- Likai Du
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China.,The Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China
| | - Zhenggang Lan
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China.,The Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, 266101 Shandong, People's Republic of China
| |
Collapse
|
26
|
Tuna D, Lu Y, Koslowski A, Thiel W. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks of Electronically Excited States. J Chem Theory Comput 2016; 12:4400-22. [DOI: 10.1021/acs.jctc.6b00403] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Deniz Tuna
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - You Lu
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Axel Koslowski
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
27
|
Guo X, Yuan H, An B, Zhu Q, Zhang J. Ultrafast excited-state deactivation of 9-methylhypoxanthine in aqueous solution: A QM/MM MD study. J Chem Phys 2016; 144:154306. [DOI: 10.1063/1.4946103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xugeng Guo
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Huijuan Yuan
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Beibei An
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Qiuling Zhu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Jinglai Zhang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| |
Collapse
|
28
|
Stavros VG, Verlet JRR. Gas-Phase Femtosecond Particle Spectroscopy: A Bottom-Up Approach to Nucleotide Dynamics. Annu Rev Phys Chem 2016; 67:211-32. [PMID: 26980306 DOI: 10.1146/annurev-physchem-040215-112428] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We summarize how gas-phase ultrafast charged-particle spectroscopy has been used to provide an understanding of the photophysics of DNA building blocks. We focus on adenine and discuss how, following UV excitation, specific interactions determine the fates of its excited states. The dynamics can be probed using a systematic bottom-up approach that provides control over these interactions and that allows ever-larger complexes to be studied. Starting from a chromophore in adenine, the excited state decay mechanisms of adenine and chemically substituted or clustered adenine are considered and then extended to adenosine mono-, di-, and trinucleotides. We show that the gas-phase approach can offer exquisite insight into the dynamics observed in aqueous solution, but we also highlight stark differences. An outlook is provided that discusses some of the most promising developments in this bottom-up approach.
Collapse
Affiliation(s)
- Vasilios G Stavros
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom;
| | - Jan R R Verlet
- Department of Chemistry, University of Durham, Durham, DH1 3LE, United Kingdom;
| |
Collapse
|
29
|
Improta R, Santoro F, Blancafort L. Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chem Rev 2016; 116:3540-93. [PMID: 26928320 DOI: 10.1021/acs.chemrev.5b00444] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The photophysics and photochemistry of DNA is of great importance due to the potential damage of the genetic code by UV light. Quantum mechanical studies have played a key role in interpretating the results of modern time-resolved pump-probe spectroscopy, and in elucidating the main photoactivated reactive paths. This review provides a concise, complete picture of the computational studies carried out, approximately, in the past decade. We start with an overview of the photophysics of the nucleobases in the gas phase and in solution. We discuss the proposed mechanisms for ultrafast decay to the ground state, that involve conical intersections, consider the role of triplet states, and analyze how the solvent modulates the photophysics. Then we move to larger systems, from dinucleotides to single- and double-stranded oligonucleotides. We focus on the possible role of charge transfer and delocalized or excitonic states in the photophysics of these systems and discuss the main photochemical paths. We finish with an outlook on the current challenges in the field and future directions of research.
Collapse
Affiliation(s)
- Roberto Improta
- Istituto di Biostrutture Biommagini (IBB-CNR), CNR-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134, Napoli, Italy
| | - Fabrizio Santoro
- Area della Ricerca di Pisa, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), CNR-Consiglio Nazionale delle Ricerche , Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi , 17071 Girona, Spain
| |
Collapse
|
30
|
Wu X, Karsili TNV, Domcke W. Excited-State Deactivation of Adenine by Electron-Driven Proton-Transfer Reactions in Adenine-Water Clusters: A Computational Study. Chemphyschem 2016; 17:1298-304. [DOI: 10.1002/cphc.201501154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Xiuxiu Wu
- Department of Chemistry; Technische Universität München; 85747 Garching Germany
| | - Tolga N. V. Karsili
- Department of Chemistry; Technische Universität München; 85747 Garching Germany
| | - Wolfgang Domcke
- Department of Chemistry; Technische Universität München; 85747 Garching Germany
| |
Collapse
|
31
|
Dral PO, Wu X, Spörkel L, Koslowski A, Weber W, Steiger R, Scholten M, Thiel W. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters. J Chem Theory Comput 2016; 12:1082-96. [PMID: 26771204 PMCID: PMC4785507 DOI: 10.1021/acs.jctc.5b01046] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Semiempirical orthogonalization-corrected
methods (OM1, OM2, and
OM3) go beyond the standard MNDO model by explicitly including additional
interactions into the Fock matrix in an approximate manner (Pauli
repulsion, penetration effects, and core–valence interactions),
which yields systematic improvements both for ground-state and excited-state
properties. In this Article, we describe the underlying theoretical
formalism of the OMx methods and their implementation
in full detail, and we report all relevant OMx parameters
for hydrogen, carbon, nitrogen, oxygen, and fluorine. For a standard
set of mostly organic molecules commonly used in semiempirical method
development, the OMx results are found to be superior
to those from standard MNDO-type methods. Parametrized Grimme-type
dispersion corrections can be added to OM2 and OM3 energies to provide
a realistic treatment of noncovalent interaction energies, as demonstrated
for the complexes in the S22 and S66×8 test sets.
Collapse
Affiliation(s)
- Pavlo O Dral
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Xin Wu
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Lasse Spörkel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Axel Koslowski
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Weber
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Rainer Steiger
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Mirjam Scholten
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
32
|
Chaiwongwattana S, Sapunar M, Ponzi A, Decleva P, Došlić N. Exploration of Excited State Deactivation Pathways of Adenine Monohydrates. J Phys Chem A 2015; 119:10637-44. [DOI: 10.1021/acs.jpca.5b07496] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Marin Sapunar
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Aurora Ponzi
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Piero Decleva
- Dipartimento di
Scienze Chimiche, Università di Trieste, 34127 Trieste, Italy
| | - Nađa Došlić
- Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
33
|
Cui G, Thiel W. Generalized trajectory surface-hopping method for internal conversion and intersystem crossing. J Chem Phys 2015; 141:124101. [PMID: 25273406 DOI: 10.1063/1.4894849] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Trajectory-based fewest-switches surface-hopping (FSSH) dynamics simulations have become a popular and reliable theoretical tool to simulate nonadiabatic photophysical and photochemical processes. Most available FSSH methods model internal conversion. We present a generalized trajectory surface-hopping (GTSH) method for simulating both internal conversion and intersystem crossing processes on an equal footing. We consider hops between adiabatic eigenstates of the non-relativistic electronic Hamiltonian (pure spin states), which is appropriate for sufficiently small spin-orbit coupling. This choice allows us to make maximum use of existing electronic structure programs and to minimize the changes to available implementations of the traditional FSSH method. The GTSH method is formulated within the quantum mechanics (QM)/molecular mechanics framework, but can of course also be applied at the pure QM level. The algorithm implemented in the GTSH code is specified step by step. As an initial GTSH application, we report simulations of the nonadiabatic processes in the lowest four electronic states (S0, S1, T1, and T2) of acrolein both in vacuo and in acetonitrile solution, in which the acrolein molecule is treated at the ab initio complete-active-space self-consistent-field level. These dynamics simulations provide detailed mechanistic insight by identifying and characterizing two nonadiabatic routes to the lowest triplet state, namely, direct S1 → T1 hopping as major pathway and sequential S1 → T2 → T1 hopping as minor pathway, with the T2 state acting as a relay state. They illustrate the potential of the GTSH approach to explore photoinduced processes in complex systems, in which intersystem crossing plays an important role.
Collapse
Affiliation(s)
- Ganglong Cui
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
34
|
Nikiforov A, Gamez JA, Thiel W, Huix-Rotllant M, Filatov M. Assessment of approximate computational methods for conical intersections and branching plane vectors in organic molecules. J Chem Phys 2015; 141:124122. [PMID: 25273427 DOI: 10.1063/1.4896372] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Quantum-chemical computational methods are benchmarked for their ability to describe conical intersections in a series of organic molecules and models of biological chromophores. Reference results for the geometries, relative energies, and branching planes of conical intersections are obtained using ab initio multireference configuration interaction with single and double excitations (MRCISD). They are compared with the results from more approximate methods, namely, the state-interaction state-averaged restricted ensemble-referenced Kohn-Sham method, spin-flip time-dependent density functional theory, and a semiempirical MRCISD approach using an orthogonalization-corrected model. It is demonstrated that these approximate methods reproduce the ab initio reference data very well, with root-mean-square deviations in the optimized geometries of the order of 0.1 Å or less and with reasonable agreement in the computed relative energies. A detailed analysis of the branching plane vectors shows that all currently applied methods yield similar nuclear displacements for escaping the strong non-adiabatic coupling region near the conical intersections. Our comparisons support the use of the tested quantum-chemical methods for modeling the photochemistry of large organic and biological systems.
Collapse
Affiliation(s)
- Alexander Nikiforov
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Jose A Gamez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Miquel Huix-Rotllant
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Michael Filatov
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
35
|
Zobač V, Lewis JP, Abad E, Mendieta-Moreno JI, Hapala P, Jelínek P, Ortega J. Photo-induced reactions from efficient molecular dynamics with electronic transitions using the FIREBALL local-orbital density functional theory formalism. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:175002. [PMID: 25791682 DOI: 10.1088/0953-8984/27/17/175002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The computational simulation of photo-induced processes in large molecular systems is a very challenging problem. Firstly, to properly simulate photo-induced reactions the potential energy surfaces corresponding to excited states must be appropriately accessed; secondly, understanding the mechanisms of these processes requires the exploration of complex configurational spaces and the localization of conical intersections; finally, photo-induced reactions are probability events, that require the simulation of hundreds of trajectories to obtain the statistical information for the analysis of the reaction profiles. Here, we present a detailed description of our implementation of a molecular dynamics with electronic transitions algorithm within the local-orbital density functional theory code FIREBALL, suitable for the computational study of these problems. As an example of the application of this approach, we also report results on the [2 + 2] cycloaddition of ethylene with maleic anhydride and on the [2 + 2] photo-induced polymerization reaction of two C60 molecules. We identify different deactivation channels of the initial electron excitation, depending on the time of the electronic transition from LUMO to HOMO, and the character of the HOMO after the transition.
Collapse
Affiliation(s)
- Vladimír Zobač
- Institute of Physic, Academy of Sciences of the Czech Republic, Cukrovarnická 10, CZ-16200 Prague, Czech Republic. Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
36
|
Brunk E, Rothlisberger U. Mixed Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of Biological Systems in Ground and Electronically Excited States. Chem Rev 2015; 115:6217-63. [PMID: 25880693 DOI: 10.1021/cr500628b] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elizabeth Brunk
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,‡Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94618, United States
| | - Ursula Rothlisberger
- †Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.,§National Competence Center of Research (NCCR) MARVEL-Materials' Revolution: Computational Design and Discovery of Novel Materials, 1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Computational modeling of photoexcitation in DNA single and double strands. Top Curr Chem (Cham) 2015; 356:89-122. [PMID: 24647841 DOI: 10.1007/128_2014_533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The photoexcitation of DNA strands triggers extremely complex photoinduced processes, which cannot be understood solely on the basis of the behavior of the nucleobase building blocks. Decisive factors in DNA oligomers and polymers include collective electronic effects, excitonic coupling, hydrogen-bonding interactions, local steric hindrance, charge transfer, and environmental and solvent effects. This chapter surveys recent theoretical and computational efforts to model real-world excited-state DNA strands using a variety of established and emerging theoretical methods. One central issue is the role of localized vs delocalized excitations and the extent to which they determine the nature and the temporal evolution of the initial photoexcitation in DNA strands.
Collapse
|
38
|
Spörkel L, Jankowska J, Thiel W. Photoswitching of salicylidene methylamine: a theoretical photodynamics study. J Phys Chem B 2014; 119:2702-10. [PMID: 25341075 PMCID: PMC4479613 DOI: 10.1021/jp5095678] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Photoswitching
of simple photochromic molecules attracts substantial
attention because of its possible role in future photon-driven molecular
electronics. Here we model the full photoswitching cycle of a minimal
photochromic Schiff base–salicylidene methylamine (SMA). We
perform semiempirical nonadiabatic on-the-fly photodynamics simulations
at the OM2/MRCI level and thoroughly analyze the structural time evolution
and switching efficiency of the system. We also identify and examine
in detail the crucial steps in the SMA photochemistry ruled by excited-state
intramolecular proton transfer. The results place the investigated
model aromatic Schiff base among the promising candidates for novel
photoswitching molecular materials. Our study also shows the potential
of the semiempirical multireference photodynamics simulations as a
tool for early stage molecular photodevice design.
Collapse
Affiliation(s)
- Lasse Spörkel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
39
|
Roberts GM, Marroux HJB, Grubb MP, Ashfold MNR, Orr-Ewing AJ. On the Participation of Photoinduced N–H Bond Fission in Aqueous Adenine at 266 and 220 nm: A Combined Ultrafast Transient Electronic and Vibrational Absorption Spectroscopy Study. J Phys Chem A 2014; 118:11211-25. [DOI: 10.1021/jp508501w] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gareth M. Roberts
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Hugo J. B. Marroux
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Michael P. Grubb
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Michael N. R. Ashfold
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Andrew J. Orr-Ewing
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
40
|
Barbatti M. Photorelaxation Induced by Water–Chromophore Electron Transfer. J Am Chem Soc 2014; 136:10246-9. [DOI: 10.1021/ja505387c] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mario Barbatti
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz
1, D-45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
41
|
Santoro F, Improta R, Fahleson T, Kauczor J, Norman P, Coriani S. Relative Stability of the La and Lb Excited States in Adenine and Guanine: Direct Evidence from TD-DFT Calculations of MCD Spectra. J Phys Chem Lett 2014; 5:1806-1811. [PMID: 26273857 DOI: 10.1021/jz500633t] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The relative position of La and Lb ππ* electronic states in purine nucleobases is a much debated topic, since it can strongly affect our understanding of their photoexcited dynamics. To assess this point, we calculated the absorption and magnetic circular dichroism (MCD) spectra of adenine, guanine, and their nucleosides in gas-phase and aqueous solution, exploiting recent developments in MCD computational technology within time-dependent density functional theory. MCD spectroscopy allows us to resolve the intense S0→ La transition from the weak S0→ Lb transition. The spectra obtained in water solution, by using B3LYP and CAM-B3LYP functionals and describing solvent effect by cluster models and by the polarizable continuum model (PCM), are in very good agreement with the experimental counterparts, thus providing direct and unambiguous evidence that the energy ordering predicted by TD-DFT, La < Lb, is the correct one.
Collapse
Affiliation(s)
- Fabrizio Santoro
- †Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, via Moruzzi 1, I-56124 Pisa, Italy
| | - Roberto Improta
- ‡Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 6, I-80134 Napoli, Italy
| | - Tobias Fahleson
- ¶Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Joanna Kauczor
- ¶Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Patrick Norman
- ¶Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Sonia Coriani
- §Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy
| |
Collapse
|
42
|
Guo X, Zhao Y, Cao Z. Ab Initio Study on Ultrafast Excited-State Decay of Allopurinol Keto-N9H Tautomer from Gas Phase to Aqueous Solution. J Phys Chem A 2014; 118:9013-20. [DOI: 10.1021/jp5020115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xugeng Guo
- State Key Laboratory for
Physical Chemistry of Solid Surfaces and Fujian Provincial Key Lab
of Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, No. 422, South Siming Road, Xiamen 361005, P. R. China
| | - Yuan Zhao
- State Key Laboratory for
Physical Chemistry of Solid Surfaces and Fujian Provincial Key Lab
of Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, No. 422, South Siming Road, Xiamen 361005, P. R. China
| | - Zexing Cao
- State Key Laboratory for
Physical Chemistry of Solid Surfaces and Fujian Provincial Key Lab
of Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, No. 422, South Siming Road, Xiamen 361005, P. R. China
| |
Collapse
|
43
|
Chatterley AS, West CW, Roberts GM, Stavros VG, Verlet JRR. Mapping the Ultrafast Dynamics of Adenine onto Its Nucleotide and Oligonucleotides by Time-Resolved Photoelectron Imaging. J Phys Chem Lett 2014; 5:843-848. [PMID: 26274076 DOI: 10.1021/jz500264c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The intrinsic photophysics of nucleobases and nucleotides following UV absorption presents a key reductionist step toward understanding the complex photodamage mechanisms occurring in DNA. The decay mechanism of adenine in particular has been the focus of intense investigation, as has how these correlate to those of its more biologically relevant nucleotide and oligonucleotides in aqueous solution. Here, we report on time-resolved photoelectron imaging of the deprotonated 3'-deoxy-adenosine-5'-monophosphate nucleotide and the adenosine di- and trinucleotides. Through a comparison of gas- and solution-phase experiments and available theoretical studies, the dynamics of the base are shown to be relatively insensitive to the surrounding environment. The decay mechanism primarily involves internal conversion from the initially populated (1)ππ* states to the ground state. The relaxation dynamics of the adenosine oligonucleotides are similar to those of the nucleobase, in contrast to the aqueous oligonucleotides, where a fraction of the ensemble forms long-lived excimer states.
Collapse
Affiliation(s)
- Adam S Chatterley
- †Department of Chemistry, University of Durham, Durham DH1 3LE, United Kingdom
- ‡Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christopher W West
- †Department of Chemistry, University of Durham, Durham DH1 3LE, United Kingdom
| | - Gareth M Roberts
- ‡Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vasilios G Stavros
- ‡Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jan R R Verlet
- †Department of Chemistry, University of Durham, Durham DH1 3LE, United Kingdom
| |
Collapse
|
44
|
Modeling processes of non-radiative relaxation of electronically excited states of fluorescent probe 4-dimethylaminochalcone and its complexes with water using non-adiabatic molecular dynamics. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Tuna D, Sobolewski AL, Domcke W. Photochemical Mechanisms of Radiationless Deactivation Processes in Urocanic Acid. J Phys Chem B 2014; 118:976-85. [DOI: 10.1021/jp411818j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deniz Tuna
- Department
of Chemistry, Technische Universität München, Lichtenbergstr.
4, 85747 Garching, Germany
| | - Andrzej L. Sobolewski
- Institute
of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02668 Warsaw, Poland
| | - Wolfgang Domcke
- Department
of Chemistry, Technische Universität München, Lichtenbergstr.
4, 85747 Garching, Germany
| |
Collapse
|
46
|
Electronic Excitation Processes in Single-Strand and Double-Strand DNA: A Computational Approach. PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS II 2014; 356:1-37. [DOI: 10.1007/128_2013_517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Photochemistry of Nucleic Acid Bases and Their Thio- and Aza-Analogues in Solution. Top Curr Chem (Cham) 2014; 355:245-327. [DOI: 10.1007/128_2014_554] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Schönborn JB, Hartke B. Photochemical dynamics of E-methylfurylfulgide—kinematic effects on photorelaxation dynamics of furylfulgides. Phys Chem Chem Phys 2014; 16:2483-90. [DOI: 10.1039/c3cp53495b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Excited States Behavior of Nucleobases in Solution: Insights from Computational Studies. Top Curr Chem (Cham) 2014; 355:329-57. [DOI: 10.1007/128_2013_524] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
ZHAO YUAN, CAO ZEXING. ABSORPTION SPECTRA OF NUCLEIC ACID BASES IN WATER ENVIRONMENT: INSIGHTS INTO FROM COMBINED QM/MM AND CLUSTER-CONTINUUM MODEL CALCULATIONS. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633613410137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electronic spectra of uracil, thymine, adenine, guanine, and cytosine in the gas phase and aqueous solution have been studied by extensive time-dependent density functional calculations. Calculations show that the Quantum mechanics/molecular mechanics (QM/MM) geometry optimization based on the molecular dynamics (MD) equilibrated configuration can locate an optimal solvated cluster for the base solvation, and the combined QM/MM and cluster-continuum computational protocol is capable of handling the solvent effect on the excited states of nucleic acid bases and providing realistic absorption spectra in water environment with relatively low computational costs. Generally, the vertical excitation energies in aqueous solution by PCM/TD-X3LYP calculations show excellent agreement with the experimental observations and the maximum deviation is less than 0.2 eV. The present results reveal that the hydrogen bond network around the excited-state base and its dipole moment change may remarkably modify the absorption spectra of nucleic acid bases in aqueous solution.
Collapse
Affiliation(s)
- YUAN ZHAO
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - ZEXING CAO
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| |
Collapse
|