1
|
Han W, Li D, Kong Y, Liu W, Qin W, Wang S, Duan X. High-performance photocatalytic peroxymonosulfate activation by carbon quantum dots via precise surface chemistry regulation: Insight into the structure-function relations. J Colloid Interface Sci 2023; 646:633-648. [PMID: 37216711 DOI: 10.1016/j.jcis.2023.05.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Carbon quantum dots (CQDs) are considered promising metal-free green catalysts for the activation of persulfates, but direct experimental evidence to identify the true active sites on the surface of CQDs is still lacking. We prepared CQDs with different oxygen contents by controlling the carbonisation temperature, using a simple pyrolysis method. Photocatalytic activity experiments show that CQDs200 exhibits the best PMS activation performance. By investigating the relationship between the oxygen functional groups on CQDs surface and photocatalytic activity, it was postulated that the C=O groups might be the predominant active site, which was confirmed by selective chemical titrations of the C=O, C-OH and COOH groups. Furthermore, limited to the weak photocatalytic properties of the pristine CQDs, ammonia and phenylhydrazine were used to precisely nitrogen-modify the o-CQD surface. We found that phenylhydrazine-modified o-CQDs-PH promoted the absorption of visible light and the separation of photocarriers, thus enhancing the activation of PMS. Theoretical calculations provide more insights from different levels of the pollutant, fine-tuned CQDs, and their interactions.
Collapse
Affiliation(s)
- Wenyuan Han
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Degang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Yifan Kong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Wei Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, ZiGong 643000, PR China
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Academy of Plateau Science and Sustainability, People's Government Of Qinghai Province & Beijing Normal University, Xining, 810016, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Yao Q, Liang T, Wu H, Xi X, Fan J. Cooccurrence of pH-sensitive shifting blue and immobile green triple surface-state fluorescence in ultrasmall super body-centered cubic carbon quantum dots. NANOTECHNOLOGY 2022; 33:385704. [PMID: 35705025 DOI: 10.1088/1361-6528/ac78f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Carbon quantum dots are widely used in various fields owing to excellent optical properties and outstanding biocompatibility. We synthesize rare super body-centered cubic (C8) structured carbon quantum dots by using cheap source materials and simple preparation method. They exhibit one shifting blue emission band and two close immobile green bands. They have large Stokes shifts ranging from 0.68 to 1.01 eV and large quantum yields as high as 60%. The three types of emissions are competitive and their intensities vary sensitively and differently with pH. Moreover, their emission intensity versus excitation power curves followI(P)∝Pkwithkvalues significantly smaller than unity. The blue emission follows the stretched exponential decay law with an intermediate lifetime of ∼3.9 ns and a lifetime-dispersion factor of ∼0.85 whereas the two green emissions exhibit faster and slower decays with respective lifetimes of around 2.0 and 13.0 ns. The results reveal that the blue emission originates from an ensemble of emission sites exhibiting quantum confinement-like effect and two green emissions stem from pH-sensitive surface functional groups-associated fluorophores.
Collapse
Affiliation(s)
- Qianqin Yao
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Tianyuan Liang
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Huaxin Wu
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiaonan Xi
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Jiyang Fan
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
3
|
Wan J, Zhang X, Fu K, Zhang X, Shang L, Su Z. Highly fluorescent carbon dots as novel theranostic agents for biomedical applications. NANOSCALE 2021; 13:17236-17253. [PMID: 34651156 DOI: 10.1039/d1nr03740d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
As an emerging fluorescent nanomaterial, carbon dots (CDs) exhibit many attractive physicochemical features, including excellent photoluminescence properties, good biocompatibility, low toxicity and the ability to maintain the unique properties of the raw material. Therefore, CDs have been intensively pursued for a wide range of applications, such as bioimaging, drug delivery, biosensors and antibacterial agents. In this review, we systematically summarize the synthesis methods of these CDs, their photoluminescence mechanisms, and the approaches for enhancing their fluorescence properties. Particularly, we summarize the recent research on the synthesis of CDs from drug molecules as raw materials and introduce the representative application aspects of these fascinating CDs. Finally, we look into the future direction of CDs in the biomedical field and discuss the challenges encountered in the current development.
Collapse
Affiliation(s)
- Jiafeng Wan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Kun Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
4
|
Sri S, Lakshmi GBVS, Gulati P, Chauhan D, Thakkar A, Solanki PR. Simple and facile carbon dots based electrochemical biosensor for TNF-α targeting in cancer patient's sample. Anal Chim Acta 2021; 1182:338909. [PMID: 34602194 DOI: 10.1016/j.aca.2021.338909] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Tumour Necrosis Factor (TNF-α) is a pro-inflammatory cytokine having key roles in cell death, differentiation, survival, proliferation, migration and is a modulator of immune system. Therefore, TNF-α is an ideal biomarker for several disease diagnosis including cancer. However, out of all the biomarkers of cancer, TNF-α) is less explored for cancer detection. Only a few reports are available of developing biosensors for TNF-α targeting in human serum samples. Also, Carbon Dots (CDs) remains less explored in biosensor application. In this regard, for the first time, a sensitive and low-cost electrochemical biosensor based on CDs has developed. CDs were synthesized by simple yet facile microwave pyrolysis. Poly methyl methacrylate (PMMA) was selected as the matrix to hold CDs to fabricate the biosensing platform. This novel CD-PMMA nanocomposite featuring excellent biocompatibility, exceptional electrocatalytic conductivity, and large surface area. CD-PMMA was applied as transducing material to efficiently conjugate antibodies specific towards TNF-α and fabricate electrochemical immunosensor for specific detection of TNF-α. The fabricated immunosensor was used for the detection of TNF-α within a wide dynamic range of 0.05-160 pg mL-1 with a lower detection limit of 0.05 pg mL-1 and sensitivity of 5.56 pg mL-1 cm-2. Furthermore, this CDs based immunosensor retains high sensitivity, selectivity, and stability. This immunosensor demonstrated a high correlation with the conventional technique, Enzyme-Linked Immunosorbent Assay for early screening of cancer patient serum samples.
Collapse
Affiliation(s)
- Smriti Sri
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - G B V S Lakshmi
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Payal Gulati
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Deepika Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Alok Thakkar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Saravanan A, Maruthapandi M, Das P, Luong JHT, Gedanken A. Green Synthesis of Multifunctional Carbon Dots with Antibacterial Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:369. [PMID: 33540607 PMCID: PMC7912860 DOI: 10.3390/nano11020369] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Carbon dots (CDs) were obtained from medicinal turmeric leaves (Curcuma longa) by a facile one-step hydrothermal method and evaluated for their bactericidal activities against two gram-negative; Escherichia coli, Klebsiella pneumoniae, and two gram-positive counterparts; Staphylococcus aureus, S. epidermidis. The CDs exhibited spherical shapes with a mean size of 2.6 nm. The fluorescence spectra of CDs revealed intense fluorescence at λex/em = 362/429 nm with a bright blue color in an aqueous solution. The CDs showed strong photostability under various environmental conditions (pH, salt, and UV-radiation). The complete bactericidal potency of CDs was 0.25 mg/mL for E.coli and S. aureus after 8 h of exposure, while for K. pneumoniae, and S. epidermidis, the CDs at 0.5 mg/mL good antibacterial effect within 8 h and complete eradication after 24 h of exposure is observed. The release of reactive oxygen species played a crucial role in the death of the bacterial cell. The present study provides a strategy for the preparation of CDs from a medicinal plant and their potential antibacterial activities against four common contagious pathogens.
Collapse
Affiliation(s)
- Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (A.S.); (M.M.); (P.D.)
| | - Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (A.S.); (M.M.); (P.D.)
| | - Poushali Das
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (A.S.); (M.M.); (P.D.)
| | - John H. T. Luong
- School of Chemistry, University College Cork, T12 YN60 Cork, Ireland;
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel; (A.S.); (M.M.); (P.D.)
| |
Collapse
|
6
|
Yang Y, Chen X, Wang Y, Wu M, Ma Y, Yang X. A Novel Fluorescent Test Papers Based on Carbon Dots for Selective and Sensitive Detection of Cr (VI). Front Chem 2020; 8:595628. [PMID: 33335886 PMCID: PMC7736037 DOI: 10.3389/fchem.2020.595628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022] Open
Abstract
In recent years, carbon dots (CDs) are promising fluorescence probes for ions detection. In this paper, the CDs which are with an average diameter of 5.5 nm were synthesized through a simple one-step hydrothermal carbonization of ethylene diamine tetraacetic acid (EDTA) salt. The CDs have strong yellow photoluminescence (PL) with a maximum emission intensity at 550 nm under an excitation wavelength of 450 nm. As the electron transfer will occur between Cr (VI) and the CDs, yellow fluorescence was quenched after adding the Cr (VI) ions. The CDs probe allows the detection of Cr (VI) ions over a concentration range from 0 to 0.1 M (R2 = 0.987) and the lower detection limit is 10−5 M. Simultaneously, the CDs show highly selectivity and stability toward the detection of Cr (VI) ions.
Collapse
Affiliation(s)
- Yizhou Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education, School of Materials Science and Engineering, Changchun University of Technology, Changchun, China
| | - Xuemei Chen
- Key Laboratory of Advanced Structural Materials, Ministry of Education, School of Materials Science and Engineering, Changchun University of Technology, Changchun, China
| | - Yangyang Wang
- Key Laboratory of Advanced Structural Materials, Ministry of Education, School of Materials Science and Engineering, Changchun University of Technology, Changchun, China
| | - Miao Wu
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Yinan Ma
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Xudong Yang
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| |
Collapse
|
7
|
Xu Y, Li P, Cheng D, Wu C, Lu Q, Yang W, Zhu X, Yin P, Liu M, Li H, Zhang Y. Group IV nanodots: synthesis, surface engineering and application in bioimaging and biotherapy. J Mater Chem B 2020; 8:10290-10308. [PMID: 33103712 DOI: 10.1039/d0tb01881c] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Group IV nanodots (NDs) mainly including carbon (C), silicon (Si), germanium (Ge) have aroused much attention as one type of important nanomaterials that are widely studied in optoelectronics, semiconductors, sensors and biomedicine-related fields owing to the low cost of synthesis, good stability, excellent biocompatibility, and some attractive newly emerged properties. In this review, the synthesis, surface engineering and application in bioimaging and biotherapy of group IV NDs are summarized and discussed. The recent progress in the rational synthesis and functionalization, specific therapy-related properties, together with in vivo and in vitro bioimaging are highlighted. Their new applications in biotherapy such as photothermal therapy (PTT) and photodynamic therapy (PDT) are illustrated with respect to C, Si and Ge NDs. The current challenges and future applications of these emerging materials in bioimaging and biotherapy are presented. This review provides readers with a distinct perspective of the group IV NDs nanomaterials for synthesis and surface engineering, and newly emerging properties related to applications in biomedicine.
Collapse
Affiliation(s)
- Yaxin Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Peipei Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Dan Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Weipeng Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
8
|
Pan M, Xie X, Liu K, Yang J, Hong L, Wang S. Fluorescent Carbon Quantum Dots-Synthesis,Functionalization and Sensing Application in FoodAnalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E930. [PMID: 32403325 PMCID: PMC7279393 DOI: 10.3390/nano10050930] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Carbon quantum dots (CQDs) with stable physicochemical properties are one of theemerging carbon nanomaterials that have been studied in recent years. In addition to the excellentoptical properties such as photoluminescence, photobleaching resistance and light stability, thismaterial also has favorable advantages of good biocompatibility and easy functionalization, whichmake it an ideal raw material for constructing sensing equipment. In addition, CQDs can combinedwith other kinds of materials to form the nanostructured composites with unique properties, whichprovides new insights and ideas for the research of many fields. In the field of food analysis,emerging CQDs have been deeply studied in food composition analysis, detection and monitoringtrace harmful substances and made remarkable research progress. This article introduces andcompares the various methods for CQDs preparation and reviews its related sensing applicationsas a new material in food components analysis and food safety inspection in recent years. It isexpected to provide a significant guidance for the further study of CQDs in the field of foodanalysis and detection. CQDs; synthesis; fluorescent sensing; food analysis.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
9
|
Nitrogen/sulfur-co-doped carbon quantum dots: a biocompatible material for the selective detection of picric acid in aqueous solution and living cells. Anal Bioanal Chem 2020; 412:3753-3763. [PMID: 32300842 DOI: 10.1007/s00216-020-02629-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Here, a fast and eco-friendly one-pot hydrothermal technique is utilized for the synthesis of nitrogen/sulfur-co-doped fluorescent carbon quantum dots (NS-CQDs) from a simple precursor of citric acid (CA) and thiosemicarbazide (TSC). The obtained NS-CQDs exhibited strong blue emission under UV light, with fluorescence quantum yield (QY) of ~37.8%. The Commission internationale de l'eclairage (CIE) coordinates originated at (0.15, 0.07), which confirmed the blue fluorescence of the synthesized NS-CQDs. Interestingly, the prepared NS-CQDs were successfully used as a selective nanoprobe for the monitoring of environmentally hazardous explosive picric acid (PA) in different nitro- and non-nitro-aromatic derivatives of PA. The mechanism of the NS-CQDs was also explored, and was posited to occur via the fluorescence resonance electron transfer (FRET) process and non-fluorescent complex formation. Importantly, this system possesses excellent biocompatibility and low cytotoxicity in HeLa cervical cancer cells; hence, it can potentially be used for PA detection in analytical, environmental, and pathological applications. Furthermore, the practical applicability of the proposed sensing system to pond water demonstrated the feasibility of our system along with good recovery. Graphical abstract.
Collapse
|
10
|
Dong X, Liang W, Meziani MJ, Sun YP, Yang L. Carbon Dots as Potent Antimicrobial Agents. Theranostics 2020; 10:671-686. [PMID: 31903144 PMCID: PMC6929978 DOI: 10.7150/thno.39863] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022] Open
Abstract
Carbon dots (CDots) have emerged to represent a highly promising new platform for visible/natural light-activated microbicidal agents. In this article, the syntheses, structures, and properties of CDots are highlighted, representative studies on their activities against bacteria, fungi, and viruses reviewed, and the related mechanistic insights discussed. Also highlighted and discussed are the excellent opportunities for potentially extremely broad applications of this new platform, including theranostics uses.
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Weixiong Liang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Mohammed J. Meziani
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
- Department of Natural Sciences, Northwest Missouri State University, Maryville, Missouri 64468, USA
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
11
|
Tian M, Liu Y, Wang Y, Zhang Y. Yellow-emitting carbon dots for selective detecting 4-NP in aqueous media and living biological imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117117. [PMID: 31141773 DOI: 10.1016/j.saa.2019.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/16/2019] [Accepted: 05/10/2019] [Indexed: 05/23/2023]
Abstract
A facile and economical hydrothermal approach is reported for preparing fluorescent nitrogen-doped carbon dots (N-CDs) via using o-phenylenediamine and dicyandiamine. Herein, the bright-yellow-emissive N-CDs are uniformly dispersed spherical nanoparticles with favorable solubility, superior photoluminescence and photobleaching resistance. The fluorescence intensity of N-CDs is linearly quenched by 4-nitrophenol (4-NP) over a concentration range of 0.1-39 μM, corresponding to a detection limit (LOD) of 0.05 μM. Based on this phenomenon, a 4-NP-detection method is exploited and applied to real samples analysis. The synthesized N-CDs are highly biocompatible and capable of biological imaging. Therefore, they are excellent candidates for live biological imaging.
Collapse
Affiliation(s)
- Min Tian
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yaoming Liu
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, China
| | - Yingte Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
12
|
Hybrid carbon dots platform enabling opportunities for desired optical properties and redox characteristics by-design. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.03.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Wang X, Yang P, Feng Q, Meng T, Wei J, Xu C, Han J. Green Preparation of Fluorescent Carbon Quantum Dots from Cyanobacteria for Biological Imaging. Polymers (Basel) 2019; 11:E616. [PMID: 30960600 PMCID: PMC6523671 DOI: 10.3390/polym11040616] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Biomass-based carbon quantum dots (CQDs) have become a significant carbon materials by their virtues of being cost-effective, easy to fabricate and low in environmental impact. However, there are few reports regarding using cyanobacteria as a carbon source for the synthesis of fluorescent CQDs. In this study, the low-cost biomass of cyanobacteria was used as the sole carbon source to synthesize water-soluble CQDs by a simple hydrothermal method. The synthesized CQDs were mono-dispersed with an average diameter of 2.48 nm and exhibited excitation-dependent emission performance with a quantum yield of 9.24%. Furthermore, the cyanobacteria-derived CQDs had almost no photobleaching under long-time UV irradiation, and exhibited high photostability in the solutions with a wide range of pH and salinity. Since no chemical reagent was involved in the synthesis of CQDs, the as-prepared CQDs were confirmed to have low cytotoxicity for PC12 cells even at a high concentration. Additionally, the CQDs could be efficiently taken up by cells to illuminate the whole cell and create a clear distinction between cytoplasm and nucleus. The combined advantages of green synthesis, cost-effectiveness and low cytotoxicity make synthesized CQDs a significant carbon source and broaden the application of cyanobacteria and provide an economical route to fabricate CQDs on a large scale.
Collapse
Affiliation(s)
- Xi Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Pei Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qian Feng
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Taotao Meng
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jing Wei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Changyan Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jingquan Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Tyurikova IA, Tyurikov KS, Aleksandrov SE, Shakhmin AL. Study of Formation Conditions and Characteristics of Carbon-containing Particles Produced from ortho-Xylene by Aerosol-Assisted Chemical Vapor Deposition. RUSS J APPL CHEM+ 2019. [DOI: 10.1134/s1070427219030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Molaei MJ. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 2018; 196:456-478. [PMID: 30683392 DOI: 10.1016/j.talanta.2018.12.042] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Carbon quantum dots (CQDs) are a member of carbon nanostructures family which have received increasing attention for their photoluminescence (PL), physical and chemical stability and low toxicity. The classical semiconductor quantum dots (QDs) are semiconductor particles that are able to emit fluorescence by excitation. The CQDs is mainly referred to photoluminescent carbon nanoparticles less than 10 nm, with surface modification or functionalization. Contrary to other carbon nanostructures, CQDs can be synthesized and functionalized fast and easily. The fluorescence origin of the CQDs is a controversial issue which depends on carbon source, experimental conditions, and functional groups. However, PL emissions originated from conjugated π-domains and surface defects have been proposed for the PL emission mechanisms of the CQDs. These nanostructures have been used as nontoxic alternatives to the classical heavy metals containing semiconductor QDs in some applications such as in-vivo and in-vitro bio-imaging, drug delivery, photosensors, chemiluminescence (CL), and etc. This paper will introduce CQDs, their structure, and PL characteristics. Recent advances of the application of CQDs in biotechnology, sensors, and CL is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Jafar Molaei
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran.
| |
Collapse
|
16
|
Thurner GC, Debbage P. Molecular imaging with nanoparticles: the dwarf actors revisited 10 years later. Histochem Cell Biol 2018; 150:733-794. [PMID: 30443735 PMCID: PMC6267421 DOI: 10.1007/s00418-018-1753-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2018] [Indexed: 11/14/2022]
Abstract
We explore present-day trends and challenges in nanomedicine. Creativity in the laboratories continues: the published literature on novel nanoparticles is now vast. Nanoagents are discussed here which are composed entirely of strongly photoluminescent materials, tunable to desired optical properties and of inherently low toxicity. We focus on "quantum nanoparticles" prepared from allotropes of carbon. The principles behind strong, tunable photoluminescence are quantum mechanical: we present them in simple outline. The major industries racing to develop these materials can offer significant technical guidance to nanomedicine, which could help to custom-design strongly signalling nanoagents specifically for stated clinical applications. Since such agents are small, they can be targeted easily, making active targeting possible. We consider it timely now to study the interactions nanoparticles undergo with tissue components in living animals and to learn to understand and overcome the numerous barriers the organism interposes between the blood and targets in or on parenchymal cells. As the near infra-red spectrum opens up, detection of glowing nanoparticles several centimeters deep in a living human subject becomes calculable and we present a simple way to do this. Finally, we discuss the slow-fuse and resource-inefficient entry of nanoparticles into clinical application. A first possible reason is failure to target across the body's barriers, see above. Second, in the sparse translational landscape funding and support gaps yawn widely between academic research and subsequent development. We consider the agendas of the numerous "stakeholders" participating in this sad landscape and point to some faint glimmers of hope for the future.
Collapse
Affiliation(s)
- Gudrun C Thurner
- Department of Radiology, Innsbruck Medical University, 6020, Innsbruck, Austria
| | - Paul Debbage
- Division of Histology and Embryology, Department of Anatomy, Medical University Innsbruck, Muellerstrasse 59, 6020, Innsbruck, Austria.
| |
Collapse
|
17
|
Sun Z, Lu F, Cheng J, Zhang M, Zhang Y, Xiong W, Zhao Y, Qu H. Haemostatic bioactivity of novel Schizonepetae Spica Carbonisata-derived carbon dots via platelet counts elevation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S308-S317. [PMID: 30431371 DOI: 10.1080/21691401.2018.1492419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Schizonepetae Spica Carbonisata (SSC) has pronounced haemostatic effects for hundreds of years and has been acknowledged in the 2015 Pharmacopoeia of the People's Republic of China (PPRC) as a haemostatic charcoal drug. However, after years of efforts, the underlying mechanism and the material basis is still less defined. In this research, we developed a novel CDs derived from SSC (SSC-CDs) with an average diameter of 1.29-6.87 nm and a quantum yield of 6.31%. SSC was prepared using a modified pyrolysis method and no further modification and external surface passivation agent is required. With abundant surface groups, SSC-CDs showed distinct solubility and bioactivity. In this study, we innovatively used the Deinagkistrodon acutus (D. acutus) venom model as well as the classical haemorrhagic animal model to evaluate the haemostatic bioactivity of SSC-CDs. The results indicated that SSC-CDs had outstanding haemostatic bioactivity and might inhibit the haemorrhagic activity via PLT elevation. According to the results of this study and our previous work, we discovered that CDs derived from different kinds of charcoal drugs presented similarities and differences in the structural feature, physicochemical property and bioactivity. In order to further explore the self-bioactivities, we first named this kind of CDs as "Chinese Medicine charcoal drug nanoparticles" (CMNP). These results may not only provide evidence for further researches of self-bioactivities of CDs but give new insights into potential biomedical and healthcare applications of CDs, therefore, make contributions to future drug discovery.
Collapse
Affiliation(s)
- Ziwei Sun
- a School of Preclinical Medicine , Beijing University of Chinese Medicine , Beijing , China
| | - Fang Lu
- a School of Preclinical Medicine , Beijing University of Chinese Medicine , Beijing , China
| | - Jinjun Cheng
- a School of Preclinical Medicine , Beijing University of Chinese Medicine , Beijing , China
| | - Meiling Zhang
- a School of Preclinical Medicine , Beijing University of Chinese Medicine , Beijing , China
| | - Yue Zhang
- b School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Wei Xiong
- b School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yan Zhao
- a School of Preclinical Medicine , Beijing University of Chinese Medicine , Beijing , China
| | - Huihua Qu
- c Center of Scientific Experiment, Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
18
|
Yang F, Ren X, LeCroy GE, Song J, Wang P, Beckerle L, Bunker CE, Xiong Q, Sun YP. Zero-Dimensional Carbon Allotropes-Carbon Nanoparticles Versus Fullerenes in Functionalization by Electronic Polymers for Different Optical and Redox Properties. ACS OMEGA 2018; 3:5685-5691. [PMID: 31458768 PMCID: PMC6641760 DOI: 10.1021/acsomega.8b00839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 06/10/2023]
Abstract
Fullerene cages are known as being able to participate in radical initiated copolymerization reactions with vinyl monomers for polymer-functionalized fullerenes. In this work, poly(N-vinylcarbazole) (PVK) was selected as a representative of electronic polymers in the functionalization of fullerene C60 by the same copolymerization reaction to yield the PVK-C60. Similarly found was that small carbon nanoparticles could also participate in the same copolymerization reaction for the nanoparticles to be surface-functionalized and -passivated by the attached PVK polymers, which are structurally adhering to the general definition on carbon dots (CDots), thus PVK-CDots. In the comparison between PVK-CDots and PVK-C60, the former was found to be more absorptive and therefore more effective in photon harvesting across the visible spectral region and also brightly fluorescent, orders of magnitude more so than the latter. Similar to the PVK-C60 and C60 cages in general, the PVK-CDots exhibited significant photoinduced electron accepting characteristics and, at the same time, also extraordinary electron donating abilities that are not available to fullerenes. Because fullerene-based composites with electronic polymers including PVK have found significant applications in optoelectronic devices and systems, the prospect of CDots represented by the PVK-CDots for similar purposes is discussed.
Collapse
Affiliation(s)
- Fan Yang
- Department
of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States
| | - Xianyan Ren
- Department
of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States
| | - Gregory E. LeCroy
- Department
of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States
| | - Jiayu Song
- Department
of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States
| | - Ping Wang
- Department
of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States
| | - Liam Beckerle
- Department
of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States
| | - Christopher E. Bunker
- Air
Force Research Laboratory, Propulsion Directorate,
Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Qingwu Xiong
- Department
of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States
| | - Ya-Ping Sun
- Department
of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
19
|
Tyurikova IA, Aleksandrov SE, Shakhmin AL. Effect of Aerosol-Assisted Chemical Vapor Deposition Parameters on Characteristics of the Resulting Carbon-containing Particles. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s1070427218020076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Bayan R, Karak N. Photo-Assisted Synthesis of a Pd-Ag@CQD Nanohybrid and Its Catalytic Efficiency in Promoting the Suzuki-Miyaura Cross-Coupling Reaction under Ligand-Free and Ambient Conditions. ACS OMEGA 2017; 2:8868-8876. [PMID: 31457415 PMCID: PMC6645576 DOI: 10.1021/acsomega.7b01504] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/28/2017] [Indexed: 05/24/2023]
Abstract
Supported bimetallic nanoparticles are very promising heterogeneous catalysts for carbon-carbon cross-coupling reactions, though reports focusing on their synergistic activity for promoting such reactions are very limited. In the current study, bimetallic Pd-Ag hybrid nanoparticles supported on carbon quantum dots (CQDs), Pd-Ag@CQDs, were synthesized by a facile and fast UV-light-driven (365 nm) one-pot protocol for the first time to investigate such a synergistic activity. The physico-chemical structural features of the Pd-Ag@CQD nanohybrid were evaluated by UV-vis, Fourier transform infrared, X-ray diffraction, electron-dispersive X-ray, and transmission electron microscopy analyses. The nanohybrid was found to have dimensions in the range of ca. 3-5 nm. The bimetallic Pd-Ag@CQD nanohybrid was utilized as an efficient heterogeneous catalyst for promoting the Suzuki-Miyaura coupling reaction with aryl bromides and aryl chlorides under ligand-free and ambient conditions. The synergistic activity of the components of the nanohybrid induced catalytic enhancement of the cross-coupling reaction in terms of short reaction times (<1 h) and high yields (>90%). The heterogeneous character of the nanohybrid system also enabled easy separation and recyclability (up to six cycles).
Collapse
Affiliation(s)
| | - Niranjan Karak
- E-mail: . Phone: +91-3712-267009. Fax: +91-3712-267006 (N.K.)
| |
Collapse
|
21
|
Yuan YG, Wang YH, Xing HH, Gurunathan S. Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma. Int J Nanomedicine 2017; 12:5819-5839. [PMID: 28860751 PMCID: PMC5566358 DOI: 10.2147/ijn.s140605] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Graphene and graphene-related materials have gained substantial interest from both academia and industry for the development of unique nanomaterials for biomedical applications. Graphene oxide (GO) and silver nanoparticles (AgNPs) are a valuable platform for the development of nanocomposites, permitting the combination of nanomaterials with different physical and chemical properties to generate novel materials with improved and effective functionalities in a single platform. Therefore, this study was conducted to synthesize a graphene oxide–silver nanoparticle (GO-AgNPs) nanocomposite using the biomolecule quercetin and evaluate the potential cytotoxicity and mechanism of GO-AgNPs in human neuroblastoma cancer cells (SH-SY5Y). Methods The synthesized GO-AgNPs were characterized using various analytical techniques. The potential toxicities of GO-AgNPs were evaluated using a series of biochemical and cellular assays. The expression of apoptotic and anti-apoptotic genes was measured by quantitative real-time reverse transcription polymerase chain reaction. Further, apoptosis was confirmed by caspase-9/3 activity and a terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and GO-AgNPs-induced autophagy was also confirmed by transmission electron microscopy. Results The prepared GO-AgNPs exhibited significantly higher cytotoxicity toward SH-SY5Y cells than GO. GO-AgNPs induced significant cytotoxicity in SH-SY5Y cells by the loss of cell viability, inhibition of cell proliferation, increased leakage of lactate dehydrogenase, decreased level of mitochondrial membrane potential, reduced numbers of mitochondria, enhanced level of reactive oxygen species generation, increased expression of pro-apoptotic genes, and decreased expression of anti-apoptotic genes. GO-AgNPs induced caspase-9/3-dependent apoptosis via DNA fragmentation. Finally, GO-AgNPs induced accumulation of autophagosomes and autophagic vacuoles. Conclusion In this study, we developed an environmentally friendly, facile, dependable, and simple method for the synthesis of GO-AgNPs nanocomposites using quercetin. The synthesized GO-AgNPs exhibited enhanced cytotoxicity compared with that of GO at very low concentrations. This study not only elucidates the potential cytotoxicity against neuroblastoma cancer cells, but also reveals the molecular mechanism of toxicity.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yan-Hong Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Hui-Hui Xing
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Peng Y, Zhou X, Zheng N, Wang L, Zhou X. Strongly tricolor-emitting carbon dots synthesized by a combined aging–annealing route and their bio-application. RSC Adv 2017. [DOI: 10.1039/c7ra10471e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A novel way has been established to make the FCDs with a very high QY, high stability, low cell cytotoxicity, and outstanding performance as a fluorescence probe.
Collapse
Affiliation(s)
- Ya Peng
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Xinyan Zhou
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Nannan Zheng
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Lingyu Wang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Xingping Zhou
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| |
Collapse
|
23
|
Wang Y, Zhu Y, Yu S, Jiang C. Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Adv 2017. [DOI: 10.1039/c7ra07573a] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review summarizes current advances on the design and the employment of fluorescent carbon dots in sensing applications, especially from the point of analytical view.
Collapse
Affiliation(s)
- Yifan Wang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Yanwu Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Shaoming Yu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Changlong Jiang
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| |
Collapse
|
24
|
Hu Y, Wang P, Bunker CE, Teisl LR, Reibold M, Yan S, Qian H, He D, Sun YP. Preparation and optical properties of magnetic carbon/iron oxide hybrid dots. RSC Adv 2017. [DOI: 10.1039/c7ra07220a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbon/Fe3O4 hybrid dots are prepared for their optical properties in reference to those of neat carbon dots.
Collapse
Affiliation(s)
- Yin Hu
- Key Laboratory of Luminescence and Optical Information
- Ministry of Education
- Institute of Optoelectronic Technology
- Beijing Jiaotong University
- Beijing 100044
| | - Ping Wang
- Department of Chemistry and Laboratory for Emerging Materials and Technology
- Clemson University
- Clemson
- USA
| | | | - Lindsay R. Teisl
- Department of Chemistry and Laboratory for Emerging Materials and Technology
- Clemson University
- Clemson
- USA
| | - McIver Reibold
- Department of Chemistry and Laboratory for Emerging Materials and Technology
- Clemson University
- Clemson
- USA
| | - Sijia Yan
- Department of Chemistry and Laboratory for Emerging Materials and Technology
- Clemson University
- Clemson
- USA
| | - Haijun Qian
- Department of Chemistry and Laboratory for Emerging Materials and Technology
- Clemson University
- Clemson
- USA
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information
- Ministry of Education
- Institute of Optoelectronic Technology
- Beijing Jiaotong University
- Beijing 100044
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology
- Clemson University
- Clemson
- USA
| |
Collapse
|
25
|
Guo Y, Yang L, Li W, Wang X, Shang Y, Li B. Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1779-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Fluorescent carbon ‘quantum’ dots from thermochemical functionalization of carbon nanoparticles. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Fernando KAS, Sahu S, Liu Y, Lewis WK, Guliants EA, Jafariyan A, Wang P, Bunker CE, Sun YP. Carbon quantum dots and applications in photocatalytic energy conversion. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8363-76. [PMID: 25845394 DOI: 10.1021/acsami.5b00448] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantum dots (QDs) generally refer to nanoscale particles of conventional semiconductors that are subject to the quantum-confinement effect, though other nanomaterials of similar optical and redox properties are also named as QDs even in the absence of strictly defined quantum confinement. Among such nanomaterials that have attracted tremendous recent interest are carbon dots, which are small carbon nanoparticles with some form of surface passivation, and graphene quantum dots in various configurations. In this article, we highlight these carbon-based QDs by focusing on their syntheses, on their photoexcited state properties and redox processes, and on their applications as photocatalysts in visible-light carbon dioxide reduction and in water-splitting, as well as on their mechanistic similarities and differences.
Collapse
Affiliation(s)
- K A Shiral Fernando
- ‡Energy Technology and Materials Division, University of Dayton Research Institute, Dayton, Ohio 45469, United States
| | - Sushant Sahu
- §Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States, and
| | - Yamin Liu
- §Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States, and
| | - William K Lewis
- ⊥Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Elena A Guliants
- ‡Energy Technology and Materials Division, University of Dayton Research Institute, Dayton, Ohio 45469, United States
| | - Amirhossein Jafariyan
- §Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States, and
| | - Ping Wang
- §Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States, and
| | - Christopher E Bunker
- ⊥Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Ya-Ping Sun
- ‡Energy Technology and Materials Division, University of Dayton Research Institute, Dayton, Ohio 45469, United States
| |
Collapse
|
28
|
LeCroy GE, Sonkar SK, Yang F, Veca LM, Wang P, Tackett KN, Yu JJ, Vasile E, Qian H, Liu Y, Luo PG, Sun YP. Toward structurally defined carbon dots as ultracompact fluorescent probes. ACS NANO 2014; 8:4522-9. [PMID: 24702526 DOI: 10.1021/nn406628s] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There has been much discussion on the need to develop fluorescent quantum dots (QDs) as ultracompact probes, with overall size profiles comparable to those of the genetically encoded fluorescent tags. In the use of conventional semiconductor QDs for such a purpose, the beautifully displayed dependence of fluorescence color on the particle diameter becomes a limitation. More recently, carbon dots have emerged as a new platform of QD-like fluorescent nanomaterials. The optical absorption and fluorescence emissions in carbon dots are not bandgap in origin, different from those in conventional semiconductor QDs. The absence of any theoretically defined fluorescence color-dot size relationships in carbon dots may actually be exploited as a unique advantage in the size reduction toward having carbon dots serve as ultracompact QD-like fluorescence probes. Here we report on carbon dots of less than 5 nm in the overall dot diameter with the use of 2,2'-(ethylenedioxy)bis(ethylamine) (EDA) molecules for the carbon particle surface passivation. The EDA-carbon dots were found to be brightly fluorescent, especially over the spectral range of green fluorescent protein. These aqueous soluble smaller carbon dots also enabled more quantitative characterizations, including the use of solution-phase NMR techniques, and the results suggested that the dot structures were relatively simple and better-defined. The potential for these smaller carbon dots to serve as fluorescence probes of overall sizes comparable to those of fluorescent proteins is discussed.
Collapse
Affiliation(s)
- Gregory Ethan LeCroy
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University , Clemson, South Carolina 29634, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ding C, Zhu A, Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 2014; 47:20-30. [PMID: 23911118 DOI: 10.1021/ar400023s] [Citation(s) in RCA: 555] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoparticles are promising scaffolds for applications such as imaging, chemical sensors and biosensors, diagnostics, drug delivery, catalysis, energy, photonics, medicine, and more. Surface functionalization of nanoparticles introduces an additional dimension in controlling nanoparticle interfacial properties and provides an effective bridge to connect nanoparticles to biological systems. With fascinating photoluminescence properties, carbon dots (C-dots), carbon-containing nanoparticles that are attracting considerable attention as a new type of quantum dot, are becoming both an important class of imaging probes and a versatile platform for engineering multifunctional nanosensors. In order to transfer C-dots from proof-of-concept studies toward real world applications such as in vivo bioimaging and biosensing, careful design and engineering of C-dot probes is becoming increasingly important. A comprehensive knowledge of how C-dot surfaces with various properties behave is essential for engineering C-dots with useful imaging properties such as high quantum yield, stability, and low toxicity, and with desirable biosensing properties such as high selectivity, sensitivity, and accuracy. Several reviews in recent years have reported preparation methods and properties of C-dots and described their application in biosensors, catalysis, photovoltatic cells, and more. However, no one has yet systematically summarized the surface engineering of C-dots, nor the use of C-dots as fluorescent nanosensors or probes for in vivo imaging in cells, tissues, and living organisms. In this Account, we discuss the major design principles and criteria for engineering the surface functionality of C-dots for biological applications. These criteria include brightness, long-term stability, and good biocompatibility. We review recent developments in designing C-dot surfaces with various functionalities for use as nanosensors or as fluorescent probes with fascinating analytical performance, and we emphasize applications in bioimaging and biosensing in live cells, tissues, and animals. In addition, we highlight our work on the design and synthesis of a C-dot ratiometric biosensor for intracellular Cu(2+) detection, and a twophoton fluorescent probe for pH measurement in live cells and tissues. We conclude this Account by outlining future directions in engineering the functional surface of C-dots for a variety of in vivo imaging applications, including dots with combined targeting, imaging and therapeutic-delivery capabilities, or high-resolution multiplexed vascular imaging. With each application C-dots should open new horizons of multiplexed quantitative detection, high-resolution fluorescence imaging, and long-term, real-time monitoring of their target.
Collapse
Affiliation(s)
- Changqin Ding
- Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Anwei Zhu
- Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Yang Tian
- Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| |
Collapse
|
30
|
Su Y, Xie M, Lu X, Wei H, Geng H, Yang Z, Zhang Y. Facile synthesis and photoelectric properties of carbon dots with upconversion fluorescence using arc-synthesized carbon by-products. RSC Adv 2014. [DOI: 10.1039/c3ra45453c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
31
|
Shen L, Chen M, Hu L, Chen X, Wang J. Growth and stabilization of silver nanoparticles on carbon dots and sensing application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:16135-40. [PMID: 24308456 DOI: 10.1021/la404270w] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Carbon dots (C-dots) have been proven to show the capability for direct reduction of Ag(+) to elemental silver (Ag(0)) without additional reducing agent or external photoirradiation by incubating Ag(+) with C-dots for 5 min in a water bath at 50 °C. Silver nanoparticles (Ag-NPs) are simultaneously formed with an average size of 3.1 ± 1.5 nm and grew on carbon dots. This process involves the oxidation of amine or phenol hydroxyl groups on the aromatic ring of C-dots. Meanwhile C-dots protect and stabilize the Ag-NPs from aggregation in aqueous medium; that is, the Ag-NPs are stable at least for 45 days in aqueous medium. The formed Ag-NPs cause significant resonance light scattering (RLS), which correlates closely with the concentration of silver cation, and this facilitates quantitative detection of silver in aqueous medium.
Collapse
Affiliation(s)
- Liming Shen
- Research Center for Analytical Sciences, College of Sciences, Northeastern University , Box 332, Shenyang 110819, China
| | | | | | | | | |
Collapse
|
32
|
Demchenko AP, Dekaliuk MO. Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl Fluoresc 2013; 1:042001. [DOI: 10.1088/2050-6120/1/4/042001] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Cao L, Meziani MJ, Sahu S, Sun YP. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc Chem Res 2013; 46:171-80. [PMID: 23092181 DOI: 10.1021/ar300128j] [Citation(s) in RCA: 410] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photoluminescent nanomaterials continue to garner research attention because of their many applications. For many years, researchers have focused on quantum dots (QDs) of semiconductor nanocrystals for their excellent performance and predictable fluorescence color variations that depend on the sizes of the nanocrystals. Even with these advantages, QDs can present some major limitations, such as the use of heavy metals in the high-performance semiconductor QDs. Therefore, researchers continue to be interested in developing new QDs or related nanomaterials. Recently, various nanoscale configurations of carbon have emerged as potential new platforms in the development of brightly photoluminescent materials. As a perfect π-conjugated single sheet, graphene lacks electronic bandgaps and is not photoluminescent. Therefore, researchers have created energy bandgaps within graphene as a strategy to impart fluorescence emissions. Researchers have explored many experimental techniques to introduce bandgaps, such as cutting graphene sheets into small pieces or manipulating the π electronic network to form quantum-confined sp(2) "islands" in a graphene sheet, which apparently involve the formation or exploitation of structural defects. In fact, defects in graphene materials not only play a critical role in the creation of bandgaps for emissive electronic transitions, but also contribute directly to the bright photoluminescence emissions observed in these materials. Researchers have found similar defect-derived photoluminescence in carbon nanotubes and small carbon nanoparticles, dubbed carbon "quantum" dots or "carbon dots". However, they have not systematically examined the emissions properties of these different yet related carbon nanomaterials toward understanding their mechanistic origins. In this Account, we examine the spectroscopic features of the observed photoluminescence emissions in graphene materials. We associate the structural characteristics in the underlying graphene materials with those emission properties as a way of classifying them into two primary categories: emissions that originate from created or induced energy bandgaps in a single graphene sheet and emissions that are associated with defects in single- and/or multiple-layer graphene. We highlight the similarities and differences between the observed photoluminescence properties of graphene materials and those found in other carbon nanomaterials including carbon dots and surface defect-passivated carbon nanotubes, and we discuss their mechanistic implications.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634-0973, United States
| | - Mohammed J. Meziani
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634-0973, United States
| | - Sushant Sahu
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634-0973, United States
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634-0973, United States
| |
Collapse
|
34
|
Luo PG, Sahu S, Yang ST, Sonkar SK, Wang J, Wang H, LeCroy GE, Cao L, Sun YP. Carbon “quantum” dots for optical bioimaging. J Mater Chem B 2013; 1:2116-2127. [DOI: 10.1039/c3tb00018d] [Citation(s) in RCA: 644] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Wang J, Sahu S, Sonkar SK, Tackett II KN, Sun KW, Liu Y, Maimaiti H, Anilkumar P, Sun YP. Versatility with carbon dots – from overcooked BBQ to brightly fluorescent agents and photocatalysts. RSC Adv 2013. [DOI: 10.1039/c3ra42302f] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Xu J, Sahu S, Cao L, Bunker CE, Peng G, Liu Y, Fernando KAS, Wang P, Guliants EA, Meziani MJ, Qian H, Sun YP. Efficient fluorescence quenching in carbon dots by surface-doped metals--disruption of excited state redox processes and mechanistic implications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16141-16147. [PMID: 23088301 DOI: 10.1021/la302506e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The carbon dots in this study were small carbon nanoparticles with the particle surface functionalized by oligomeric poly(ethylene glycol) diamine molecules. Upon photoexcitation, the brightly fluorescent carbon dots in aqueous solution served the function of excellent electron donors to reduce platinum(IV) and gold(III) compounds into their corresponding metals to be deposited on the dot surface. The deposited metals even in very small amounts were found to have dramatic quenching effects on the fluorescence emission intensities, but essentially no effects on the observed fluorescence decays. The obviously exclusive near-neighbor static quenching could be attributed to the disruption of electron-hole radiative recombinations (otherwise responsible for the fluorescence emissions in carbon dots). The results provide important evidence for the availability of photogenerated electrons that could be harvested for productive purposes, which in turn supports the current mechanistic framework on fluorescence emission and photoinduced redox properties of carbon dots.
Collapse
Affiliation(s)
- Juan Xu
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|