1
|
Paul S, Verma S, Chen YC. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS Infect Dis 2024; 10:1034-1055. [PMID: 38428037 PMCID: PMC11019562 DOI: 10.1021/acsinfecdis.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.
Collapse
Affiliation(s)
- Suchita Paul
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
- Gangwal
School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yu-Chie Chen
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Akbari M, Rezayan AH, Rastegar H, Alebouyeh M, Yahyaei M. Design and synthesis of vancomycin-functionalized ZnFe 2 O 4 nanoparticles as an effective antibacterial agent against methicillin-resistant Staphylococcus aureus. Drug Dev Res 2024; 85:e22148. [PMID: 38349268 DOI: 10.1002/ddr.22148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
The emergence of antibiotic-resistant bacterial infections is a principal threat to global health. Functionalization of nanomaterial with antibiotics is known as a useful method for increasing the effectiveness of existing antibiotics. In this study, vancomycin-functionalized ZnFe2 O4 nanocomposite (ZnFe2 O4 @Cell@APTES@Van) was synthesized, and its functional groups and particle size were characterized using Fourier-transform infrared spectroscopy, thermogravimetric analysis, dynamic light scattering, scanning electron microscope, and transmission electron microscopy. The antibacteria activity of the synthesized nanocomposite was evaluated using minimum inhibitory concentration and minimum bactericidal concentration against Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA). Cytotoxicity assay was done by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide method. Characterization analyses of synthesized nanocomposite confirmed the binding of vancomysin on the surface of ZnFe2 O4 @Cell@APTES. Nanocomposite exhibited an aggregated semi-spherical structure with hydrodynamic radii of ∼382 nm. In vitro antibacterial activity test showed that vancomycin and vancomycin functionalized ZnFe2 O4 have no antibacterial effect against E. coli. S. aureus was sensitive to vancomycin and ZnFe2 O4 @Cell@APTES@Van NPs and ZnFe2 O4 NPs did not improve vancomycin antibacterial activity against these bacteria. MRSA is resistant to vancomycin while ZnFe2 O4 @Cell@APTES@Van NPs was efficient in inhibiting MRSA growth. In summary, this study showed that attachment of vancomycin to ZnFe2 O4 NPs was increased its antibacterial activity against MRSA.
Collapse
Affiliation(s)
- Minoo Akbari
- Department of Nanobiotechnology and Biomimetics, Faculty of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Ali Hossein Rezayan
- Department of Nanobiotechnology and Biomimetics, Faculty of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mahmoud Alebouyeh
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad Yahyaei
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| |
Collapse
|
3
|
Mosaad YO, Ateyya H, Hussein MA, Moro AM, Abdel-Wahab EA, El-Ella AA, Nassar ZN. BAO-Ag-NPs as Promising Suppressor of ET-1/ICAM-1/VCAM-1 Signaling Pathway in ISO-induced AMI in Rats. Curr Pharm Biotechnol 2024; 25:772-786. [PMID: 37861014 DOI: 10.2174/0113892010256434231010062233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Acute myocardial infarction (AMI) is the most prevalent cause of myocardial fibrosis and the leading cause of mortality from cardiovascular disease. The goal of this work was to synthesize Balanites aegyptiaca oil-silver nanoparticles (BAO-Ag-NPs) and evaluate their cardioprotective effect against ISO-induced myocardial infarction in rats, as well as their mechanism. MATERIALS AND METHODS BAO was isolated, and the unsaturated fatty acids were estimated. BAO-Ag-NPs was prepared, LD50 was calculated to evaluate its cardioprotective activity against ISO (85 mg/kg)-induced AMI. Different doses of BAO-Ag-NPs (1/50 LD50; 46.6 mg/kg.b.w and 1/20 LD50; 116.5 mg) were received to the rats. RESULTS The total fatty acids and unsaturated fatty acids generated by BAO were 909.63 and 653.47 mg/100 g oil, respectively. Oleic acid methyl ester, 9-octadecenoic acid methyl ester, and 9, 12-Octadecadienoic acid methyl ester were the predominant ingredients, with concentrations of 107.6, 243.42, and 256.77 mg/100 g oil, respectively. According to TEM and DLS examinations, BAO-Ag-NPs have a size of 38.20 ± 2.5 nm and a negative zeta potential of -19.82 ± 0.30 mV, respectively. The LD50 of synthesized BAO-Ag-NPs is 2330 mg. On the other hand, BAOAg- NPs reduce myocardial necrosis by lowering increased BNP, cTnI, CK-MB, TC, TG, MDA, MMP2, TGF-β1, PGE2, and IL-6 levels. Furthermore, BAO-Ag-NPs inhibit the expression of ET-1, ICAM-1, and VCAM-1 genes as well as enhance HDL-C, CAT, and GSH levels when compared to the ISO-treated group of rats. Histopathological findings suggested that BAO-Ag- NPs enhance cardiac function by increasing posterior wall thickness in heart tissues. CONCLUSION BAO-Ag-NPs protect against AMI in vivo by regulating inflammation, excessive autophagy, and oxidative stress, as well as lowering apoptosis via suppression of the ET-1, ICAM-1, and VCAM-1 signaling pathways.
Collapse
Affiliation(s)
- Yasser O Mosaad
- Department of Pharmacy, Practice & Clinical Pharmacy, Faculty of Pharmacy, Future University, Cairo, Egypt
| | - Hayam Ateyya
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University, Cairo, Egypt
| | - Mohammed A Hussein
- Department of Biochemistry, Faculty of Applied Medical Science, October 6th University, October 6 City, Egypt
| | - Ahmed M Moro
- Department of Biophysics, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Giza, Egypt
| | - Ebtsam A Abdel-Wahab
- Department of Biophysics, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Giza, Egypt
| | - Amr A El-Ella
- Department of Measurements, Photochemistry and Agriculture Applications, National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt
| | - Zahraa N Nassar
- Medical Laboratory Department, Faculty of Applied Medical Sciences, October 6 University, October 6 City, Giza, Egypt
| |
Collapse
|
4
|
Bacitracin and isothiocyanate functionalized silver nanoparticles for synergistic and broad spectrum antibacterial and antibiofilm activity with selective toxicity to bacteria over mammalian cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112649. [PMID: 35034824 DOI: 10.1016/j.msec.2022.112649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
Abstract
Silver nanoparticles functionalized with bacitracin (BA), a cyclic peptide and isothiocyanate (ITC), a natural plant product, was fabricated. The particle size of AgNP-BA&ITC was optimized using full factorial design. The optimized particles were of 10-15 nm in size as seen under TEM and showed chemical signature of both bacitracin as well as isothiocynate in FTIR spectroscopy. XRD analysis confirmed the crystalline nature of these particles. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) showed 21 mg/g silver content in AgNP-BA &ITC. These nanoparticles exhibited MIC in the range of 12.5-25 μg/mL and > 3 log10 reduction in cell viability for both Gram positive and Gram-negative bacteria. They clearly demonstrated biofilm inhibition (BIC90 = 150-400 μg/mL) as well as were capable of eradicating both young and mature preformed biofilms as observed by live/dead imaging and crystal violet assay. Further cytotoxicity assay suggests high selectivity (IC50/MIC90 value = 15.2-30.4) of these particles. The results in the present investigation provide role of these novel nanoparticles having substantially low silver content with reduced toxicity and good antibacterial and antibiofilm activity for external wound healing applications.
Collapse
|
5
|
Rai A, Ferrão R, Palma P, Patricio T, Parreira P, Anes E, Tonda-Turo C, Martins C, Alves N, Ferreira L. Antimicrobial peptide-based materials: opportunities and challenges. J Mater Chem B 2022; 10:2384-2429. [DOI: 10.1039/d1tb02617h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multifunctional properties of antimicrobial peptides (AMPs) make them attractive candidates for the treatment of various diseases. AMPs are considered alternatives to antibiotics due to the rising number of multidrug-resistant...
Collapse
|
6
|
Liu X, Zhang Q, Knoll W, Liedberg B, Wang Y. Rational Design of Functional Peptide-Gold Hybrid Nanomaterials for Molecular Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000866. [PMID: 32743897 DOI: 10.1002/adma.202000866] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/21/2020] [Indexed: 05/12/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively used for decades in biosensing-related development due to outstanding optical properties. Peptides, as newly realized functional biomolecules, are promising candidates of replacing antibodies, receptors, and substrates for specific molecular interactions. Both peptides and AuNPs are robust and easily synthesized at relatively low cost. Hence, peptide-AuNP-based bio-nano-technological approaches have drawn increasing interest, especially in the field of molecular targeting, cell imaging, drug delivery, and therapy. Many excellent works in these areas have been reported: demonstrating novel ideas, exploring new targets, and facilitating advanced diagnostic and therapeutic technologies. Importantly, some of them also have been employed to address real practical problems, especially in remote and less privileged areas. This contribution focuses on the application of peptide-gold hybrid nanomaterials for various molecular interactions, especially in biosensing/diagnostics and cell targeting/imaging, as well as for the development of highly active antimicrobial/antifouling coating strategies. Rationally designed peptide-gold nanomaterials with functional properties are discussed along with future challenges and opportunities.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Qingwen Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Wolfgang Knoll
- Austrian Institute of Technology, Giefinggasse 4, Vienna, 1210, Austria
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
7
|
Isoniazid Conjugated Magnetic Nanoparticles Loaded with Amphotericin B as a Potent Antiamoebic Agent against Acanthamoeba castellanii. Antibiotics (Basel) 2020; 9:antibiotics9050276. [PMID: 32466210 PMCID: PMC7277095 DOI: 10.3390/antibiotics9050276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023] Open
Abstract
The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 μg/mL against Acanthamoeba castellanii trophozoites and 50 μg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.
Collapse
|
8
|
Jia H, Draz MS, Ruan Z. Functional Nanomaterials for the Detection and Control of Bacterial Infections. Curr Top Med Chem 2020; 19:2449-2475. [PMID: 31642781 DOI: 10.2174/1568026619666191023123407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/11/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Infections with multidrug-resistant bacteria that are difficult to treat with commonly used antibiotics have spread globally, raising serious public health concerns. Conventional bacterial detection techniques are time-consuming, which may delay treatment for critically ill patients past the optimal time. There is an urgent need for rapid and sensitive diagnosis and effective treatments for multidrug-resistant pathogenic bacterial infections. Advances in nanotechnology have made it possible to design and build nanomaterials with therapeutic and diagnostic capabilities. Functional nanomaterials that can specifically interact with bacteria offer additional options for the diagnosis and treatment of infections due to their unique physical and chemical properties. Here, we summarize the recent advances related to the preparation of nanomaterials and their applications for the detection and treatment of bacterial infection. We pay particular attention to the toxicity of therapeutic nanoparticles based on both in vitro and in vivo assays. In addition, the major challenges that require further research and future perspectives are briefly discussed.
Collapse
Affiliation(s)
- Huiqiong Jia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Perez J, Cifuentes J, Cuellar M, Suarez-Arnedo A, Cruz JC, Muñoz-Camargo C. Cell-Penetrating And Antibacterial BUF-II Nanobioconjugates: Enhanced Potency Via Immobilization On Polyetheramine-Modified Magnetite Nanoparticles. Int J Nanomedicine 2019; 14:8483-8497. [PMID: 31695376 PMCID: PMC6817350 DOI: 10.2147/ijn.s224286] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction Controlled delivery of therapeutic molecules in a localized manner has become an area of interest due to its potential to reduce drug exposure to healthy tissues and consequently to minimize undesirable side effects. We have recently introduced novel cell-penetrating vehicles by immobilizing the antimicrobial peptide Buforin II (BUF-II) on magnetite nanoparticles (MPNPs). Despite the potent translocating abilities of such nanobioconjugates, they failed to preserve the antimicrobial activity of native BUF-II. In this work, we explored immobilization on MNPs with the aid of polymer surface spacers, which has been considered as an attractive alternative for the highly efficient conjugation of various biomolecules. Methods Here, we immobilized BUF-II on polyetheramine-modified magnetite nanoparticles to preserve its structural integrity. As a result, for the obtained nanobioconjugates the lost antimicrobial activity against gram-positive and gram-negative bacteria was only 50% with respect to the native BUF-II. The nanobioconjugates were also characterized via FTIR, DLS, TEM, and TGA. Delivery on THP-1, HaCaT, HFF, and Escherichia coli cells was conducted to confirm capability for cell membrane translocation. Results Colocalization with Lysotracker showed an endosomal escape efficiency of about 73∓12% in THP-1 cells. Avoidance of endocytic pathways of internalization was qualitatively confirmed by a delivery assay at low temperature. Nuclear penetration of the nanobioconjugates was corroborated via confocal microscopy and showed high biocompatibility as demonstrated by hemolysis levels below 5% and acute cytotoxicity of around 15%. Conclusion The obtained nanobioconjugates were capable of translocating the cell membrane and nuclei of different normal and cancerous cell lines without significantly decreasing viability. This makes the vehicle addressable for a number of applications ranging from antimicrobial topical treatments to the delivery of nucleotides and therapeutic molecules with difficulties to bypass cell membranes.
Collapse
Affiliation(s)
- Jessica Perez
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Javier Cifuentes
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Monica Cuellar
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Alejandra Suarez-Arnedo
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Juan C Cruz
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Carolina Muñoz-Camargo
- GINIB Research Group, Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
10
|
Gasmalla HB, Lu X, Shinger MI, Ni L, Chishti AN, Diao G. Novel magnetically separable of Fe 3O 4/Ag 3PO 4@WO 3 nanocomposites for enhanced photocatalytic and antibacterial activity against Staphylococcus aureus (S. aureus). J Nanobiotechnology 2019; 17:58. [PMID: 31036008 PMCID: PMC6489341 DOI: 10.1186/s12951-019-0485-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/04/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Iron oxide nanocomposites have received a great attention for their application in various fields like physics, medicine, biology, and material science etc., due to their unique properties, such as magnetism, electrical properties, small size, biocompatibility and low toxicity. METHODS Fe3O4/Ag3PO4@WO3 nanocomposites with different weight percent of Ag3PO4 were successfully prepared through fabricated Ag3PO4/Fe3O4 with WO3 via in situ fabrication method, electrospinning involved precursor solution preparation and spinning to enhance photocatalyst performance under simulated sunlight for the degradation of methylene blue (MB) and antibacterial activity against Staphylococcus aureus (S. aureus). RESULTS The photocatalytic degradation of methylene blue (MB) under simulated light irradiation indicated that the nanocomposite with 0.25 mg of Ag3PO4 has the best activity. An additional advantage of these photocatalysts is magnetic recoverability, using external magnetic field and photocatalytic stability of the nanocomposites was evaluated for three cycles. In addition, using different scavengers, holes (h+) and superoxide radical (O 2 ·-) radicals and hydroxide radical (·OH) were identified the main oxidative species in the degradation reaction of methylene blue. CONCLUSIONS The results reveal that Fe3O4/Ag3PO4@WO3-0.25 nanocomposites have photocatalytic and antibacterial activity against S. aureus. The photocatalyst and mechanism based on the enhancement of electron transfer processes between Ag3PO4 and WO3 nanoparticles.
Collapse
Affiliation(s)
- Hind Baballa Gasmalla
- Key Laboratory of Environmental Materials & Environmental Engineering of Jiangsu Province, College of Chemistry and Chemistry Engineering, Yangzhou University, Yangzhou, 225002, China
- Forest Products and Industries Department, Faculty of Forestry, University of Khartoum, Khartoum, Sudan
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Mahgoub Ibrahim Shinger
- Chemistry Department, Faculty of Science, International University of Africa, Khartoum, Sudan
| | - Lubin Ni
- Key Laboratory of Environmental Materials & Environmental Engineering of Jiangsu Province, College of Chemistry and Chemistry Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Aadil Nabi Chishti
- Key Laboratory of Environmental Materials & Environmental Engineering of Jiangsu Province, College of Chemistry and Chemistry Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Guowang Diao
- Key Laboratory of Environmental Materials & Environmental Engineering of Jiangsu Province, College of Chemistry and Chemistry Engineering, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
11
|
Cuellar M, Cifuentes J, Perez J, Suarez-Arnedo A, Serna JA, Groot H, Muñoz-Camargo C, Cruz JC. Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int J Nanomedicine 2018; 13:8087-8094. [PMID: 30568447 PMCID: PMC6276613 DOI: 10.2147/ijn.s188074] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction One of the major challenges of modern pharmacology is the development of systems for the delivery of therapeutic molecules in a controlled and localized manner. One strategy is to use nanostructured supports, which are well suited to carry a large number of molecules on a per mass basis. A major challenge for these supports is, however, their limited ability to bypass the cell membrane. Recent studies propose that to overcome this issue, potent translocating cell-penetrating peptides (CPPs) can be conjugated to their surfaces. Methods Here, we conjugated the antimicrobial CPP buforin II (BUF2) to the surface of magnetite nanoparticles to enhance their cell penetration. Conjugates were characterized via Fourier transform infrared spectroscopy, dynamic light scattering, and thermogravimetric analysis, and their biocompatibility was corroborated. The conjugates were delivered in both bacterial and mammalian cells demonstrating the intracellular inclusion in THP-1 cells for the first time. Results Despite the promising outcome, our studies showed that the obtained conjugates failed to maintain the native antimicrobial activity of BUF2. We hypothesize that to overcome this issue, a flexible linker can be inserted prior to conjugation. Conclusion Our study highlights the potential of BUF2-magnetite conjugates as cell-penetrating vehicles for the targeted delivery of pharmacological agents. This provides support for the idea of a promising combined drug delivery and antimicrobial peptide therapy.
Collapse
Affiliation(s)
- Monica Cuellar
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia, ;
| | - Javier Cifuentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia, ;
| | - Jessica Perez
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia, ;
| | | | - Julian A Serna
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia, ;
| | - Helena Groot
- Human Genetics Laboratory, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | | | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia, ;
| |
Collapse
|
12
|
Rodrigues GR, López-Abarrategui C, de la Serna Gómez I, Dias SC, Otero-González AJ, Franco OL. Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. Int J Pharm 2018; 555:356-367. [PMID: 30453018 DOI: 10.1016/j.ijpharm.2018.11.043] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 01/07/2023]
Abstract
In the last years, the antimicrobial resistance against antibiotics has become a serious health issue, arise as global threat. This has generated a search for new strategies in the progress of new antimicrobial therapies. In this context, different nanosystems with antimicrobial properties have been studied. Specifically, magnetic nanoparticles seem to be very attractive due to their relatively simple synthesis, intrinsic antimicrobial activity, low toxicity and high versatility. Iron oxide NPs (IONPs) was authorized by the World Health Organization for human used in biomedical applications such as in vivo drug delivery systems, magnetic guided therapy and contrast agent for magnetic resonance imaging have been widely documented. Furthermore, the antimicrobial activity of different magnetic nanoparticles has recently been demonstrated. This review elucidates the recent progress of IONPs in drug delivery systems and focuses on the treatment of infectious diseases and target the possible detrimental biological effects and associated safety issues.
Collapse
Affiliation(s)
- Gisele Regina Rodrigues
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | | | - Inés de la Serna Gómez
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | - Simoni Campos Dias
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | | | - Octavio Luiz Franco
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Post-Graduate in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil.
| |
Collapse
|
13
|
Yuan K, Mei Q, Guo X, Xu Y, Yang D, Sánchez BJ, Sheng B, Liu C, Hu Z, Yu G, Ma H, Gao H, Haisch C, Niessner R, Jiang Z, Jiang Z, Zhou H. Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood. Chem Sci 2018; 9:8781-8795. [PMID: 30746114 PMCID: PMC6338054 DOI: 10.1039/c8sc04637a] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022] Open
Abstract
A SERS based biosensor has been developed for isolation, detection and killing of multiple bacterial pathogens.
In this study, a new biosensor based on a sandwich structure has been developed for the isolation and detection of multiple bacterial pathogens via magnetic separation and SERS tags. This novel assay relies on antimicrobial peptide (AMP) functionalized magnetic nanoparticles as “capturing” probes for bacteria isolation and gold coated silver decorated graphene oxide (Au@Ag-GO) nanocomposites modified with 4-mercaptophenylboronic acid (4-MPBA) as SERS tags. When different kinds of bacterial pathogens are combined with the SERS tags, the “fingerprints” of 4-MPBA show corresponding changes due to the recognition interaction between 4-MPBA and different kinds of bacterial cell wall. Compared with the label-free SERS detection of bacteria, 4-MPBA here can be used as an internal standard (IS) to correct the SERS intensities with high reproducibility, as well as a Raman signal reporter to enhance the sensitivity and amplify the differences among the bacterial “fingerprints”. Thus, three bacterial pathogens (Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa) were successfully isolated and detected, with the lowest concentration for each of the strains detected at just 101 colony forming units per mL (CFU mL–1). According to the changes in the “fingerprints” of 4-MPBA, three bacterial strains were successfully discriminated using discriminant analysis (DA). In addition, the AMP modified Fe3O4NPs feature high antibacterial activities, and can act as antibacterial agents with low cellular toxicology in the long-term storage of blood for future safe blood transfusion applications. More importantly, this novel method can be applied in the detection of bacteria from clinical patients who are infected with bacteria. In the validation analysis, 97.3% of the real blood samples (39 patients) could be classified effectively (only one patient infected with E. coli was misclassified). The multifunctional biosensor presented here allows for the simultaneous isolation, discrimination and killing of bacteria, suggesting its high potential for clinical diagnosis and safe blood transfusions.
Collapse
Affiliation(s)
- Kaisong Yuan
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ; .,Department of Analytical Chemistry , Physical Chemistry and Chemical Engineering , University of Alcala , Alcala de Henares E-28871 , Madrid , Spain
| | - Qingsong Mei
- School of Medical Engineering , Hefei University of Technology , Tunxi road 193 , Hefei 230009 , China
| | - Xinjie Guo
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Youwei Xu
- Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , Shanghai 201210 , China
| | - Danting Yang
- Department of Preventative Medicine , Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology , Medical School of Ningbo University , Ningbo , Zhejiang 315211 , China
| | - Beatriz Jurado Sánchez
- Department of Analytical Chemistry , Physical Chemistry and Chemical Engineering , University of Alcala , Alcala de Henares E-28871 , Madrid , Spain
| | - Bingbing Sheng
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Chusheng Liu
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Ziwei Hu
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Guangchao Yu
- The First Affiliated Hospital of Jinan University , Guangzhou , Guangdong 510632 , China
| | - Hongming Ma
- The First Affiliated Hospital of Jinan University , Guangzhou , Guangdong 510632 , China
| | - Hao Gao
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Christoph Haisch
- Institute of Hydrochemistry and Chair for Analytical Chemistry , Technical University of Munich , Marchioninistr. 17, D-81377 , Munich , Germany
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical Chemistry , Technical University of Munich , Marchioninistr. 17, D-81377 , Munich , Germany
| | | | - Zhengjing Jiang
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis , College of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China . ; ;
| |
Collapse
|
14
|
Lasemi N, Bomatí Miguel O, Lahoz R, Lennikov VV, Pacher U, Rentenberger C, Kautek W. Laser‐Assisted Synthesis of Colloidal FeW
x
O
y
and Fe/Fe
x
O
y
Nanoparticles in Water and Ethanol. Chemphyschem 2018. [DOI: 10.1002/cphc.201701214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Niusha Lasemi
- University of Vienna Department of Physical Chemistry Währinger Strasse 42 A-1090 Vienna Austria
| | - Oscar Bomatí Miguel
- University of Vienna Department of Physical Chemistry Währinger Strasse 42 A-1090 Vienna Austria
- Universidad de Cádiz Departamento de Física de la Materia Condesada, Ancha 16, E-11001 Cádiz (Spain)
| | - Ruth Lahoz
- University of Zaragoza – CSIC Centro de Química y Materiales de Aragón María de Luna 3 E-50018 Zaragoza Spain
| | - Vassili. V. Lennikov
- University of Zaragoza – CSIC Instituto de Ciencia de Materiales de Aragón María de Luna 3 E-50018 Zaragoza Spain
| | - Ulrich Pacher
- University of Vienna Department of Physical Chemistry Währinger Strasse 42 A-1090 Vienna Austria
| | | | - Wolfgang Kautek
- University of Vienna Department of Physical Chemistry Währinger Strasse 42 A-1090 Vienna Austria
| |
Collapse
|
15
|
Rajchakit U, Sarojini V. Recent Developments in Antimicrobial-Peptide-Conjugated Gold Nanoparticles. Bioconjug Chem 2017; 28:2673-2686. [DOI: 10.1021/acs.bioconjchem.7b00368] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Urawadee Rajchakit
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019 Auckland, New Zealand
| |
Collapse
|
16
|
Jana TK, Pal A, Mandal AK, Sarwar S, Chakrabarti P, Chatterjee K. Photocatalytic and Antibacterial Performance of α-Fe2
O3
Nanostructures. ChemistrySelect 2017. [DOI: 10.1002/slct.201700294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- T. K. Jana
- Dept of Physics and Technophysics; Vidyasagar University; Midnapore - 721102 India
| | - A. Pal
- Dept of Physics and Technophysics; Vidyasagar University; Midnapore - 721102 India
| | - A. K. Mandal
- Chemical Biology Laboratory; Dept. of Sericulture; Raiganj University; Raiganj - 733134 India
| | - S. Sarwar
- Department of Biochemistry; Bose Institute; Kolkata 700054 India
| | - P. Chakrabarti
- Department of Biochemistry; Bose Institute; Kolkata 700054 India
| | - K. Chatterjee
- Dept of Physics and Technophysics; Vidyasagar University; Midnapore - 721102 India
| |
Collapse
|
17
|
Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents 2017; 49:137-152. [PMID: 28089172 DOI: 10.1016/j.ijantimicag.2016.11.011] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/22/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
Microbial infectious diseases are a global threat to human health. Excess and improper use of antibiotics has created antimicrobial-resistant microbes that can defy clinical treatment. The hunt for safe and alternate antimicrobial agents is on in order to overcome such resistant micro-organisms, and the birth of nanotechnology offers promise to combat infectious organisms. Over the past two decades, metal oxide nanoparticles (MeO-NPs) have become an attractive alternative source to combat microbes that are highly resistant to various classes of antibiotics. Their vast array of physicochemical properties enables MeO-NPs to act as antimicrobial agents through various mechanisms. Apart from exhibiting antimicrobial properties, MeO-NPs also serve as carriers of drugs, thus barely providing a chance for micro-organisms to develop resistance. These immense multiple properties exhibited by MeO-NPs will have an impact on the treatment of deadly infectious diseases. This review discusses the mechanisms of action of MeO-NPs against micro-organisms, safety concerns, challenges and future perspectives.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
18
|
Lopez-Abarrategui C, Figueroa-Espi V, Lugo-Alvarez MB, Pereira CD, Garay H, Barbosa JA, Falcão R, Jiménez-Hernández L, Estévez-Hernández O, Reguera E, Franco OL, Dias SC, Otero-Gonzalez AJ. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5. Int J Nanomedicine 2016; 11:3849-57. [PMID: 27563243 PMCID: PMC4984987 DOI: 10.2147/ijn.s107561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity.
Collapse
Affiliation(s)
| | - Viviana Figueroa-Espi
- Lab of Structural Analysis, Institute of Materials Science and Technology, Havana University, La Habana, Havana, Cuba
| | | | - Caroline D Pereira
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | - Hilda Garay
- Laboratory of Peptide Analysis and Synthesis, Center of Genetic Engineering and Biotechnology, La Habana, Havana, Cuba
| | - João Arg Barbosa
- Department of Cellular Biology, Laboratory of Biophysics, Institute of Biological Science, University of Brasilia
| | - Rosana Falcão
- Brazilian Agricultural Research Corporation (EMBRAPA), Center of Genetic Resources and Biotechnology (CENARGEN), Brasilia DF, Brazil
| | - Linnavel Jiménez-Hernández
- Lab of Structural Analysis, Institute of Materials Science and Technology, Havana University, La Habana, Havana, Cuba
| | - Osvaldo Estévez-Hernández
- Lab of Structural Analysis, Institute of Materials Science and Technology, Havana University, La Habana, Havana, Cuba; Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Cuba
| | - Edilso Reguera
- Research Center for Applied Science and Advanced Technology (CICATA), National Polytechnic Institute (IPN), Lagaria Unit, Mexico DF, Mexico
| | - Octavio L Franco
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Post-Graduate in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, Brazil
| | - Simoni C Dias
- Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
19
|
Vries RD, Andrade CAS, Bakuzis AF, Mandal SM, Franco OL. Next-generation nanoantibacterial tools developed from peptides. Nanomedicine (Lond) 2016; 10:1643-61. [PMID: 26008197 DOI: 10.2217/nnm.15.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria resistant against various antimicrobial compounds have emerged in many countries, and the age of resistance has just started. Among the more promising novel antimicrobial compounds on which current research is focusing are the antimicrobial peptides (AMPs). These are often less susceptible to bacterial resistance since multiple modifications in the cellular membranes, cell wall and metabolism are required to reduce their effectiveness. Most likely, the use of pure AMPs will be insufficient for controlling pathogenic bacteria, and innovative approaches are required to employ AMPs in new antibiotic treatments. Therefore, here we review novel bionanotechnological approaches, including nanofibers, nanoparticles and magnetic particles for effectively using AMPs in fighting infectious diseases.
Collapse
Affiliation(s)
- Renko de Vries
- 2Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, PO Box 196, 9700 AD Groningen, The Netherlands
| | - Cesar A S Andrade
- 3Departamento de Bioquímica e Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Andris F Bakuzis
- 4Instituto de Física, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Santi M Mandal
- 5Anti-Infective Research Lab, Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, Índia
| | - Octavio L Franco
- 6Centro de Análises, Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70790-160, Brazil.,7S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| |
Collapse
|
20
|
Gasmalla HB, Idris AM, Shinger MI, Qin D, Shan D, Lu X. <i>Balanites aegyptiaca</i> Oil Synthesized Iron Oxide Nanoparticles: Characterization and Antibacterial Activity. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbnb.2016.73016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Yao J, Zhang S, Li W, Du Z, Li Y. In vitro drug controlled-release behavior of an electrospun modified poly(lactic acid)/bacitracin drug delivery system. RSC Adv 2016. [DOI: 10.1039/c5ra22467e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BAC-loaded electrospun uniaxial and coaxial fibers were achieved with different drug release patterns whose carrier materials were PLLA and PLLA/PLL.
Collapse
Affiliation(s)
- Junyan Yao
- Department of Applied Chemistry
- Northwestern Polytechnical University
- Xi′an 710072
- China
| | - Shijie Zhang
- Department of Applied Chemistry
- Northwestern Polytechnical University
- Xi′an 710072
- China
| | - Wudan Li
- Department of Applied Chemistry
- Northwestern Polytechnical University
- Xi′an 710072
- China
| | - Zhi Du
- Department of Applied Chemistry
- Northwestern Polytechnical University
- Xi′an 710072
- China
| | - Yujie Li
- Department of Applied Chemistry
- Northwestern Polytechnical University
- Xi′an 710072
- China
| |
Collapse
|
22
|
Bastarrachea LJ, Denis-Rohr A, Goddard JM. Antimicrobial Food Equipment Coatings: Applications and Challenges. Annu Rev Food Sci Technol 2015; 6:97-118. [DOI: 10.1146/annurev-food-022814-015453] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luis J. Bastarrachea
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003;
| | - Anna Denis-Rohr
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003;
| | - Julie M. Goddard
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003;
| |
Collapse
|
23
|
Pina AS, Batalha ÍL, Fernandes CSM, Aoki MA, Roque ACA. Exploring the potential of magnetic antimicrobial agents for water disinfection. WATER RESEARCH 2014; 66:160-168. [PMID: 25201339 DOI: 10.1016/j.watres.2014.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/16/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
Industrial and urban activities yield large amounts of contaminated groundwater, which present a major health issue worldwide. Infectious diseases are the most common health risk associated with drinking-water and wastewater remediation is a major concern of our modern society. The field of wastewater treatment is being revolutionized by new nano-scale water disinfection devices which outperform most currently available technologies. In particular, iron oxide magnetic nanoparticles (MNPs) have been widely used in environmental applications due to their unique physical-chemical properties. In this work, poly(ethylene) glycol (PEG)-coated MNPs have been functionalized with (RW)3, an antimicrobial peptide, to yield a novel magnetic-responsive support with antimicrobial activity against Escherichia coli K-12 DSM498 and Bacillus subtilis 168. The magnetic-responsive antimicrobial device showed to be able to successfully disinfect the surrounding solution. Using a rapid high-throughput screening platform, the minimal inhibitory concentration (MIC) was determined to be 500 μM for both strains with a visible bactericidal effect.
Collapse
Affiliation(s)
- Ana S Pina
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Íris L Batalha
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Cláudia S M Fernandes
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Matheus A Aoki
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana C A Roque
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
24
|
Antimicrobial and controlled release studies of a novel nystatin conjugated iron oxide nanocomposite. BIOMED RESEARCH INTERNATIONAL 2014; 2014:651831. [PMID: 24900976 PMCID: PMC4037599 DOI: 10.1155/2014/651831] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/24/2014] [Indexed: 01/02/2023]
Abstract
Nystatin is a tetraene diene polyene antibiotic showing a broad spectrum of antifungal activity. In the present study, we prepared a nystatin nanocomposite (Nyst-CS-MNP) by loading nystatin (Nyst) on chitosan (CS) coated magnetic nanoparticles (MNPs). The magnetic nanocomposites were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), vibrating sample magnetometer (VSM), and scanning electron microscopy (SEM). The XRD results showed that the MNPs and nanocomposite are pure magnetite. The FTIR analysis confirmed the binding of CS on the surface of the MNPs and also the loading of Nyst in the nanocomposite. The Nyst drug loading was estimated using UV-Vis instrumentation and showing a 14.9% loading in the nanocomposite. The TEM size image of the MNPs, CS-MNP, and Nyst-CS-MNP was 13, 11, and 8 nm, respectively. The release profile of the Nyst drug from the nanocomposite followed a pseudo-second-order kinetic model. The antimicrobial activity of the as-synthesized Nyst and Nyst-CS-MNP nanocomposite was evaluated using an agar diffusion method and showed enhanced antifungal activity against Candida albicans. In this manner, this study introduces a novel nanocomposite that can decrease fungus activity on-demand for numerous medical applications.
Collapse
|
25
|
Zhang L, Dong WF, Sun HB. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. NANOSCALE 2013; 5:7664-7684. [PMID: 23877222 DOI: 10.1039/c3nr01616a] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have shown great promise in biomedical applications. In this review, we summarize the recent advances in the design and fabrication of core-shell and hetero-structured SPIONs and further outline some exciting developments and progresses of these multifunctional SPIONs for diagnosis, multimodality imaging, therapy, and biophotonics.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | | | | |
Collapse
|