1
|
Sarangi N, Shafaq-Zadah M, Berselli GB, Robinson J, Dransart E, Di Cicco A, Lévy D, Johannes L, Keyes TE. Galectin-3 Binding to α 5β 1 Integrin in Pore Suspended Biomembranes. J Phys Chem B 2022; 126:10000-10017. [PMID: 36413808 PMCID: PMC9743206 DOI: 10.1021/acs.jpcb.2c05717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Galectin-3 (Gal3) is a β-galactoside binding lectin that mediates many physiological functions, including the binding of cells to the extracellular matrix for which the glycoprotein α5β1 integrin is of critical importance. The mechanisms by which Gal3 interacts with membranes have not been widely explored to date due to the complexity of cell membranes and the difficulty of integrin reconstitution within model membranes. Herein, to study their interaction, Gal3 and α5β1 were purified, and the latter reconstituted into pore-suspended lipid bilayers comprised eggPC:eggPA. Using electrochemical impedance and fluorescence lifetime correlation spectroscopy, we found that on incubation with low nanomolar concentrations of wild-type Gal3, the membrane's admittance and fluidity, as well as integrin's lateral diffusivity, were enhanced. These effects were diminished in the following conditions: (i) absence of integrin, (ii) presence of lactose as a competitive inhibitor of glycan-Gal3 interaction, and (iii) use of a Gal3 mutant that lacked the N-terminal oligomerization domain (Gal3ΔNter). These findings indicated that WTGal3 oligomerized on α5β1 integrin in a glycan-dependent manner and that the N-terminal domain interacted directly with membranes in a way that is yet to be fully understood. At concentrations above 10 nM of WTGal3, membrane capacitance started to decrease and very slowly diffusing molecular species appeared, which indicated the formation of protein clusters made from WTGal3-α5β1 integrin assemblies. Overall, our study demonstrates the capacity of WTGal3 to oligomerize in a cargo protein-dependent manner at low nanomolar concentrations. Of note, these WTGal3 oligomers appeared to have membrane active properties that could only be revealed using our sensitive methods. At slightly higher WTGal3 concentrations, the capacity to generate lateral assemblies between cargo proteins was observed. In cells, this could lead to the construction of tubular endocytic pits according to the glycolipid-lectin (GL-Lect) hypothesis or to the formation of galectin lattices, depending on cargo glycoprotein stability at the membrane, the local Gal3 concentration, or plasma membrane intrinsic parameters. The study also demonstrates the utility of microcavity array-suspended lipid bilayers to address the biophysics of transmembrane proteins.
Collapse
Affiliation(s)
- Nirod
Kumar Sarangi
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Massiullah Shafaq-Zadah
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France
| | - Guilherme B. Berselli
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Jack Robinson
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Estelle Dransart
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France
| | - Aurélie Di Cicco
- Institut
Curie, PSL Research University, UMR 168 CNRS, 75248Paris Cedex 05, France
| | - Daniel Lévy
- Institut
Curie, PSL Research University, UMR 168 CNRS, 75248Paris Cedex 05, France
| | - Ludger Johannes
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France,
| | - Tia E. Keyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland,
| |
Collapse
|
2
|
Sarangi N, Prabhakaran A, Keyes TE. Multimodal Investigation into the Interaction of Quinacrine with Microcavity-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6411-6424. [PMID: 35561255 PMCID: PMC9134496 DOI: 10.1021/acs.langmuir.2c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Indexed: 05/19/2023]
Abstract
Quinacrine is a versatile drug that is widely recognized for its antimalarial action through its inhibition of the phospholipase enzyme. It also has antianthelmintic and antiprotozoan activities and is a strong DNA binder that may be used to combat multidrug resistance in cancer. Despite extensive cell-based studies, a detailed understanding of quinacrine's influence on the cell membrane, including permeability, binding, and rearrangement at the molecular level, is lacking. Herein, we apply microcavity-suspended lipid bilayers (MSLBs) as in vitro models of the cell membrane comprising DOPC, DOPC:Chol(3:1), and DOPC:SM:Chol(2:2:1) to investigate the influence of cholesterol and intrinsic phase heterogeneity induced by mixed-lipid composition on the membrane interactions of quinacrine. Using electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) as label-free surface-sensitive techniques, we have studied quinacrine interaction and permeability across the different MSLBs. Our EIS data reveal that the drug is permeable through ternary DOPC:SM:Chol and DOPC-only bilayer compositions. In contrast, the binary cholesterol/DOPC membrane arrested permeation, yet the drug binds or intercalates at this membrane as reflected by an increase in membrane impedance. SERS supported the EIS data, which was utilized to gain structural insights into the drug-membrane interaction. Our SERS data also provides a simple but powerful label-free assessment of drug permeation because a significant SERS enhancement of the drug's Raman signature was observed only if the drug accessed the plasmonic interior of the pore cavity passing through the membrane. Fluorescent lifetime correlation spectroscopy (FLCS) provides further biophysical insight, revealing that quinacrine binding increases the lipid diffusivity of DOPC and the ternary membrane while remarkably decreasing the lipid diffusivity of the DOPC:Chol membrane. Overall, because of its adaptability to multimodal approaches, the MSLB platform provides rich and detailed insights into drug-membrane interactions, making it a powerful tool for in vitro drug screening.
Collapse
Affiliation(s)
- Nirod
Kumar Sarangi
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Amrutha Prabhakaran
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
3
|
Shao M, Liu D, Yan B, Feng X, Zhang X, Zhang Y. Layer-by-Layer Electrodeposition of FTO/TiO 2 /Cu x O/CeO 2 (1 < x < 2) Photocatalysts with High Peroxidase-Like Activity by Greatly Enhanced Singlet Oxygen Generation. SMALL METHODS 2021; 5:e2100423. [PMID: 34927991 DOI: 10.1002/smtd.202100423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/26/2021] [Indexed: 06/14/2023]
Abstract
Inorganic nanomaterials have attracted much attention as enzyme mimics because of simple and stable spatial conformation of those artificially synthesized nanocatalysts. Cu2 O, as an important kind of narrow band gap semiconductor, is identified as effective as visible-light-driven photocatalysts, which can catalyze decomposition of H2 O2 into reactive oxygen species. Moreover, after forming Cux O/CeO2 hybrids, the strongly coupled interface between the two components will further improve their catalytic performance. In this paper, the authors try to construct FTO/TiO2 /Cux O/CeO2 (1 < x < 2) nanohybrids with such a kind of active interface via a layer-by-layer electrodeposition strategy by aid of the following surface etching process. It is found that FTO/TiO2 /Cux O/CeO2 exhibits good peroxidase mimic activity in the dark but much better performance under visible light irradiation (λ ≥ 420 nm) during catalytic oxidation of 3,3',5,5'-tetramethylbenzidine substrates in the presence of H2 O2 . Detailed characterizations disclose that the construction of TiO2 /Cu2 O pn-heterojunctions do effectively accelerate separation of photogenerated carriers, and the formation of a highly active Cux O/CeO2 interface is synergistically favorable for selectively generating singlet oxygen to boost the catalytic performance of FTO/TiO2 /Cux O/CeO2 .
Collapse
Affiliation(s)
- Mingzhe Shao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Dapeng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Baolin Yan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Xilan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
| | - Xiaojuan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P.R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
4
|
Sarangi NK, Prabhakaran A, Keyes TE. Interaction of Miltefosine with Microcavity Supported Lipid Membrane: Biophysical Insights from Electrochemical Impedance Spectroscopy. ELECTROANAL 2020. [DOI: 10.1002/elan.202060424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus Dublin 9 D09 W6Y4 Ireland
| | - Amrutha Prabhakaran
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus Dublin 9 D09 W6Y4 Ireland
| | - Tia E. Keyes
- School of Chemical Sciences and National Centre for Sensor Research Dublin City University DCU Glasnevin Campus Dublin 9 D09 W6Y4 Ireland
| |
Collapse
|
5
|
Schmallegger M, Barbon A, Bortolus M, Chemelli A, Bilkis I, Gescheidt G, Weiner L. Systematic Quantification of Electron Transfer in a Bare Phospholipid Membrane Using Nitroxide-Labeled Stearic Acids: Distance Dependence, Kinetics, and Activation Parameters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10429-10437. [PMID: 32787070 PMCID: PMC7586382 DOI: 10.1021/acs.langmuir.0c01585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Indexed: 06/11/2023]
Abstract
In this report, we present a method to characterize the kinetics of electron transfer across the bilayer of a unilamellar liposome composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The method utilizes synthetic phospholipids containing noninvasive nitroxide spin labels having the >N-O• moiety at well-defined distances from the outer surface of the liposome to serve as reporters for their local environment and, at the same time, permit measurement of the kinetics of electron transfer. We used 5-doxyl and 16-doxyl stearic acids. The paramagnetic >N-O• moiety is photo-oxidized to the corresponding diamagnetic oxoammonium cation by a ruthenium electron acceptor formed in the solution. Electron transfer is monitored by three independent spectroscopic methods: by both steady-state and time-resolved electron paramagnetic resonance and by optical spectroscopy. These techniques allowed us to differentiate between the electron transfer rates of nitroxides located in the outer leaflet of the phospholipid bilayer and of those located in the inner leaflet. Measurement of electron transfer rates as a function of temperature revealed a low-activation barrier (ΔG‡ ∼ 40 kJ/mol) that supports a tunneling mechanism.
Collapse
Affiliation(s)
- Max Schmallegger
- Institute
of Physical and Theoretical Chemistry, Graz
University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Antonio Barbon
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via Marzolo 1, Padova 35131, Italy
| | - Marco Bortolus
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Via Marzolo 1, Padova 35131, Italy
| | - Angela Chemelli
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Itzhak Bilkis
- Faculty
of Agricultural, Food and Environmental Sciences, Hebrew University, Rehovot 76100, Israel
| | - Georg Gescheidt
- Institute
of Physical and Theoretical Chemistry, Graz
University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Lev Weiner
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|
6
|
Kanwa N, De SK, Maity A, Chakraborty A. Interaction of aliphatic amino acids with zwitterionic and charged lipid membranes: hydration and dehydration phenomena. Phys Chem Chem Phys 2020; 22:3234-3244. [DOI: 10.1039/c9cp06188f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aliphatic amino acids interact differently in order to induce gelation or fluidization in zwitterionic and charged lipid membranes as a result of hydration or dehydration of the membrane surface.
Collapse
Affiliation(s)
- Nishu Kanwa
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Soumya Kanti De
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Avijit Maity
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| | - Anjan Chakraborty
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
| |
Collapse
|
7
|
Pawar S, Bhattacharya A, Nag A. Metal-Enhanced Fluorescence Study in Aqueous Medium by Coupling Gold Nanoparticles and Fluorophores Using a Bilayer Vesicle Platform. ACS OMEGA 2019; 4:5983-5990. [PMID: 31459747 PMCID: PMC6648612 DOI: 10.1021/acsomega.9b00036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
Gold nanoparticles (AuNPs) display excellent plasmonic properties, which are expected to assist fluorescence enhancement for dyes, and the phenomenon is known as "metal-enhanced fluorescence" (MEF). In this study, we demonstrate AuNP-induced MEF for a modified bipyridine-based construct 4-(pyridine-2-yl)-3H-pyrrolo[2,3-c]quinoline (PPQ) when it binds with biologically important Zn2+. Importantly, this phenomenon is observed under aqueous conditions in a biocompatible bilayer vesicle platform. When PPQ binds with Zn2+ to form the complex in the presence of appropriate AuNPs, MEF is evident once compared with the fluorescence intensity in the absence of AuNPs. Among the three different sizes of AuNPs used, the enhancement is observed with an average diameter of 33 nm, whereas 18 and 160 nm do not show any enhancement. A possible mechanism is ascribed to the radiating plasmons of the AuNPs, which can couple with the emission frequencies of the fluorophore under a critical distance-dependent arrangement. We witness that the enhancement in fluorescence is accompanied with a reduction in lifetime components. It is proposed that the mechanism may be predominantly derived from the enhancement of an intrinsic radiative decay rate and partly from the localized electric field effect. Overall, this work shows a rational approach to design fluorophore-metal configurations with the desired emissive properties and a basis for a useful nanophotonic technology under biological conditions.
Collapse
Affiliation(s)
- Shweta Pawar
- Department of Chemistry, Birla
Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| | - Anupam Bhattacharya
- Department of Chemistry, Birla
Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| | - Amit Nag
- Department of Chemistry, Birla
Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India
| |
Collapse
|
8
|
Sarangi NK, Roobala C, Basu JK. Unraveling complex nanoscale lipid dynamics in simple model biomembranes: Insights from fluorescence correlation spectroscopy in super-resolution stimulated emission depletion mode. Methods 2018; 140-141:198-211. [DOI: 10.1016/j.ymeth.2017.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 12/24/2022] Open
|
9
|
Peptides as Bio-inspired Molecular Electronic Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29081052 DOI: 10.1007/978-3-319-66095-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.
Collapse
|
10
|
Piantanida L, Bolt HL, Rozatian N, Cobb SL, Voïtchovsky K. Ions Modulate Stress-Induced Nanotexture in Supported Fluid Lipid Bilayers. Biophys J 2017; 113:426-439. [PMID: 28746853 PMCID: PMC5529180 DOI: 10.1016/j.bpj.2017.05.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
Most plasma membranes comprise a large number of different molecules including lipids and proteins. In the standard fluid mosaic model, the membrane function is effected by proteins whereas lipids are largely passive and serve solely in the membrane cohesion. Here we show, using supported 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayers in different saline solutions, that ions can locally induce ordering of the lipid molecules within the otherwise fluid bilayer when the latter is supported. This nanoordering exhibits a characteristic length scale of ∼20 nm, and manifests itself clearly when mechanical stress is applied to the membrane. Atomic force microscopy (AFM) measurements in aqueous solutions containing NaCl, KCl, CaCl2, and Tris buffer show that the magnitude of the effect is strongly ion-specific, with Ca2+ and Tris, respectively, promoting and reducing stress-induced nanotexturing of the membrane. The AFM results are complemented by fluorescence recovery after photobleaching experiments, which reveal an inverse correlation between the tendency for molecular nanoordering and the diffusion coefficient within the bilayer. Control AFM experiments on other lipids and at different temperatures support the hypothesis that the nanotexturing is induced by reversible, localized gel-like solidification of the membrane. These results suggest that supported fluid phospholipid bilayers are not homogenous at the nanoscale, but specific ions are able to locally alter molecular organization and mobility, and spatially modulate the membrane’s properties on a length scale of ∼20 nm. To illustrate this point, AFM was used to follow the adsorption of the membrane-penetrating antimicrobial peptide Temporin L in different solutions. The results confirm that the peptides do not absorb randomly, but follow the ion-induced spatial modulation of the membrane. Our results suggest that ionic effects have a significant impact for passively modulating the local properties of biological membranes, when in contact with a support such as the cytoskeleton.
Collapse
Affiliation(s)
- Luca Piantanida
- Department of Physics, Durham University, Durham, United Kingdom
| | - Hannah L Bolt
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Neshat Rozatian
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham, United Kingdom
| | | |
Collapse
|
11
|
Sarangi NK, Ganesan M, Muraleedharan K, Patnaik A. Regio-selective lipase catalyzed hydrolysis of oxanorbornane-based sugar-like amphiphiles at air–water interface: A polarized FT-IRRAS study. Chem Phys Lipids 2017; 204:25-33. [DOI: 10.1016/j.chemphyslip.2017.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
|
12
|
Sarangi NK, Ayappa KG, Visweswariah SS, Basu JK. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes. Phys Chem Chem Phys 2016; 18:29935-29945. [DOI: 10.1039/c6cp04631b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Using STED-FCS, we show that the fluidity of the membrane controls the induced dynamical heterogeneity in model membranes upon interacting with pore-forming toxins.
Collapse
Affiliation(s)
| | - K. G. Ayappa
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore 560 012
- India
- Centre for Biosystems Science and Engineering
| | - Sandhya. S. Visweswariah
- Centre for Biosystems Science and Engineering
- Indian Institute of Science
- Bangalore 560012
- India
- Department of Molecular Reproduction
| | | |
Collapse
|
13
|
Ishigami T, Suga K, Umakoshi H. Chiral Recognition of L-Amino Acids on Liposomes Prepared with L-Phospholipid. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21065-72. [PMID: 26339952 DOI: 10.1021/acsami.5b07198] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this study, we demonstrated that liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) can recognize several l-amino acids, but not their d-enantiomers, by analyzing their adsorptive behavior and using circular dichroism spectroscopy. Changes in liposomal membrane properties, determined based on fluorescent probe analysis and differential scanning calorimetry, were induced by l-amino acid binding. UV resonance Raman spectroscopy analysis suggested that the chiral recognition was mediated by electrostatic, hydrophobic, and hydrogen bond interactions, where the recognition site could therefore be constructed on the DPPC membrane. Our findings clearly indicate the potential function of liposomes in asymmetric recognition.
Collapse
Affiliation(s)
- Takaaki Ishigami
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
14
|
Sarangi NK, Ramesh N, Patnaik A. Structure and dynamics of H2O vis-á-vis phenylalanine recognition at a DPPC lipid membrane via interfacial H-bond types: insights from polarized FT-IRRAS and ADMP simulations. J Chem Phys 2015; 142:024702. [PMID: 25591372 DOI: 10.1063/1.4905075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Preferential and enantioselective interactions of L-/D-Phenylalanine (L-Phe and D-Phe) and butoxycarbonyl-protected L-/D-Phenylalanine (LPA and DPA) as guest with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (L-DPPC) as host were tapped by using real time Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). Polarization-modulated FT-IRRAS of DPPC monolayers above the phenylalanine modified subphases depicted fine structure/conformation differences under considerations of controlled 2D surface pressure. Selective molecular recognition of D-enantiomer over L-enantiomer driven by the DPPC head group via H-bonding and electrostatic interactions was evident spectroscopically. Accordingly, binding constants (K) of 145, 346, 28, and 56 M(-1) for LPA, DPA, L-Phe, and D-Phe, respectively, were estimated. The real time FT-IRRAS water bands were strictly conformation sensitive. The effect of micro-solvation on the structure and stability of the 1:1 diastereomeric L-lipid⋯, LPA/DPA and L-lipid⋯, (L/D)-Phe adducts was investigated with the aid of Atom-centered Density Matrix Propagation (ADMP), a first principle quantum mechanical molecular dynamics approach. The phosphodiester fragment was the primary site of hydration where specific solvent interactions were simulated through single- and triple- "water-phosphate" interactions, as water cluster's "tetrahedral dice" to a "trimeric motif" transformation as a partial de-clusterization was evident. Under all the hydration patterns considered in both static and dynamic descriptions of density functional theory, L-lipid/D-amino acid enantiomer adducts continued to be stable structures while in dynamic systems, water rearranged without getting "squeezed-out" in the process of recognition. In spite of the challenging computational realm of this multiscale problem, the ADMP simulated molecular interactions complying with polarized vibrational spectroscopy unraveled a novel route to chiral recognition and interfacial water structure.
Collapse
Affiliation(s)
- Nirod Kumar Sarangi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Nivarthi Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Archita Patnaik
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
15
|
Sarangi NK, Patnaik A. Bio-inspired Janus gold nanoclusters with lipid and amino acid functional capping ligands: micro-voltammetry and in situ electron transfer in a biogenic environment. RSC Adv 2014. [DOI: 10.1039/c4ra01869a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
16
|
Amdursky N. Enhanced solid-state electron transport via tryptophan containing peptide networks. Phys Chem Chem Phys 2014; 15:13479-82. [PMID: 23832315 DOI: 10.1039/c3cp51748a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrical conductivity via peptide networks was measured using conductive probe atomic force microscopy, where the tryptophan-containing peptide network (composed of Phe-Trp dipeptides) exhibited a superior (5 fold) conductivity in comparison to an all phenylalanine network (composed of Phe-Phe dipeptides). These results are in line with previous spectroscopic measurements exploring intramolecular electron transfer in proteins. Bias-scaling factors (instead of the more commonly used transition voltage spectroscopy method) were calculated for the two peptide networks. These calculations showed substantial differences between the two peptide networks, suggesting different electron transport characteristics. While the factor for the tryptophan-containing network is similar to conjugated molecules with a low electron-tunneling barrier, the one for the all phenylalanine network can be ascribed as an 'intermediate' factor between conjugated and saturated molecules.
Collapse
Affiliation(s)
- Nadav Amdursky
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|