1
|
Behrens M, Englert L, Bayer T, Wollenhaupt M. XUV-beamline for photoelectron imaging spectroscopy with shaped pulses. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:093101. [PMID: 39287480 DOI: 10.1063/5.0223450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
We introduce an extreme ultraviolet (XUV)-beamline designed for the time-resolved investigation and coherent control of attosecond (as) electron dynamics in atoms and molecules by polarization-shaped as-laser pulses. Shaped as-pulses are generated through high-harmonic generation (HHG) of tailored white-light supercontinua (WLS) in noble gases. The interaction of shaped as-pulses with the sample is studied using velocity map imaging (VMI) techniques to achieve the differential detection of photoelectron wave packets. The instrument consists of the WLS-beamline, which includes a hollow-core fiber compressor and a home-built 4f polarization pulse shaper, and the high-vacuum XUV-beamline, which combines an HHG-stage and a versatile multi-experiment vacuum chamber equipped with a home-built VMI spectrometer. The VMI spectrometer allows the detection of photoelectron wave packets from both the multiphoton ionization (MPI) of atomic or molecular samples by the tailored WLS-pulses and the single-photon ionization (SPI) by the shaped XUV-pulses. To characterize the VMI spectrometer, we studied the MPI of xenon atoms by linearly polarized WLS pulses. To validate the interplay of these components, we conducted experiments on the SPI of xenon atoms with linearly polarized XUV-pulses. Our results include the reconstruction of the 3D photoelectron momentum distribution (PMD) and initial findings on the coherent control of the PMD by tuning the spectrum of the XUV-pulses with the spectral phase of the WLS. Our results demonstrate the performance of the entire instrument for HHG-based photoelectron imaging spectroscopy with prototypical shaped pulses. Perspectively, we will employ polarization-tailored WLS-pulses to generate polarization-shaped as-pulses.
Collapse
Affiliation(s)
- M Behrens
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - L Englert
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - T Bayer
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - M Wollenhaupt
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| |
Collapse
|
2
|
Sparling C, Ruget A, Ireland L, Kotsina N, Ghafur O, Leach J, Townsend D. The importance of molecular axis alignment and symmetry-breaking in photoelectron elliptical dichroism. J Chem Phys 2023; 159:214301. [PMID: 38038198 DOI: 10.1063/5.0180361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Photoelectron angular distributions (PADs) produced from the photoionization of chiral molecules using elliptically polarized light exhibit a forward/backward asymmetry with respect to the optical propagation direction. By recording these distributions using the velocity-map imaging (VMI) technique, the resulting photoelectron elliptical dichroism (PEELD) has previously been demonstrated as a promising spectroscopic tool for studying chiral molecules in the gas phase. The use of elliptically polarized laser pulses, however, produces PADs (and consequently, PEELD distributions) that do not exhibit cylindrical symmetry about the propagation axis. This leads to significant limitations and challenges when employing conventional VMI acquisition and data processing strategies. Using novel photoelectron image analysis methods based around Hankel transform reconstruction tomography and machine learning, however, we have quantified-for the first time-significant symmetry-breaking contributions to PEELD signals that are of a comparable magnitude to the symmetric terms in the multiphoton ionization of (1R,4R)-(+)- and (1S,4S)-(-)-camphor. This contradicts any assumptions that symmetry-breaking can be ignored when reconstructing VMI data. Furthermore, these same symmetry-breaking terms are expected to appear in any experiment where circular and linear laser fields are used together. This ionization scheme is particularly relevant for investigating dynamics in chiral molecules, but it is not limited to them. Developing a full understanding of these terms and the role they play in the photoionization of chiral molecules is of clear importance if the potential of PEELD and related effects for future practical applications is to be fully realized.
Collapse
Affiliation(s)
- Chris Sparling
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Alice Ruget
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Lewis Ireland
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Omair Ghafur
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Jonathan Leach
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
3
|
Kaneyasu T, Hikosaka Y, Wada S, Fujimoto M, Ota H, Iwayama H, Katoh M. Time domain double slit interference of electron produced by XUV synchrotron radiation. Sci Rep 2023; 13:6142. [PMID: 37061592 PMCID: PMC10105747 DOI: 10.1038/s41598-023-33039-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
We present a new realization of the time-domain double-slit experiment with photoelectrons, demonstrating that spontaneous radiation from a bunch of relativistic electrons can be used to control the quantum interference of single-particles. The double-slit arrangement is realized by a pair of light wave packets with attosecond-controlled spacing, which is naturally included in the spontaneous radiation from two undulators in series. Photoelectrons emitted from helium atoms are observed in the energy-domain under the condition of detecting them one by one, and the stochastic buildup of the quantum interference pattern on a detector plane is recorded.
Collapse
Affiliation(s)
- T Kaneyasu
- SAGA Light Source, Tosu, 841-0005, Japan.
- Institute for Molecular Science, Okazaki, 444-8585, Japan.
| | - Y Hikosaka
- Institute of Liberal Arts and Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - S Wada
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - M Fujimoto
- Institute for Molecular Science, Okazaki, 444-8585, Japan
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603, Japan
| | - H Ota
- Institute for Molecular Science, Okazaki, 444-8585, Japan
| | - H Iwayama
- Institute for Molecular Science, Okazaki, 444-8585, Japan
- Sokendai (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - M Katoh
- Institute for Molecular Science, Okazaki, 444-8585, Japan
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603, Japan
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan
| |
Collapse
|
4
|
Sparling C, Townsend D. Tomographic reconstruction techniques optimized for velocity-map imaging applications. J Chem Phys 2022; 157:114201. [PMID: 36137806 DOI: 10.1063/5.0101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Examples of extracting meaningful information from image projection data using tomographic reconstruction techniques can be found in many areas of science. Within the photochemical dynamics community, tomography allows for complete three-dimensional (3D) charged particle momentum distributions to be reconstructed following a photodissociation or photoionization event. This permits highly differential velocity- and angle-resolved measurements to be made simultaneously. However, the generalized tomographic reconstruction strategies typically adopted for use with photochemical imaging-based around the Fourier-slice theorem and filtered back-projection algorithms-are not optimized for these specific types of problems. Here, we discuss pre-existing alternative strategies-namely, the simultaneous iterative reconstruction technique and Hankel Transform Reconstruction (HTR)-and introduce them in the context of velocity-map imaging applications. We demonstrate the clear advantages they afford, and how they can perform considerably better than approaches commonly adopted at present. Most notably, with HTR we can set a bound on the minimum number of projections required to reliably reconstruct 3D photoproduct distributions. This bound is significantly lower than what is currently accepted and will help make tomographic imaging far more accessible and efficient for many experimentalists working in the field of photochemical dynamics.
Collapse
Affiliation(s)
- Chris Sparling
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Dave Townsend
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
5
|
Bayer T, Wollenhaupt M. Molecular Free Electron Vortices in Photoionization by Polarization-Tailored Ultrashort Laser Pulses. Front Chem 2022; 10:899461. [PMID: 35720990 PMCID: PMC9201240 DOI: 10.3389/fchem.2022.899461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Atomic and molecular free electron vortices (FEVs), characterized by their spiral-shaped momentum distribution, have recently attracted a great deal of attention due to their varied shapes and their unusual topological properties. Shortly after their theoretical prediction by the single-photon ionization (SPI) of He atoms using pairs of counterrotating circularly polarized attosecond pulses, FEVs have been demonstrated experimentally by the multiphoton ionization (MPI) of alkali atoms using single-color and bichromatic circularly polarized femtosecond pulse sequences. Recently, we reported on the analysis of the experimental results employing a numerical model based on the ab initio solution of the time-dependent Schrödinger equation (TDSE) for a two-dimensional (2D) atom interacting with a polarization-shaped ultrashort laser field. Here, we apply the 2D TDSE model to study molecular FEVs created by SPI and MPI of a diatomic molecule using polarization-tailored single-color and bichromatic femtosecond pulse sequences. We investigate the influence of the coupled electron-nuclear dynamics on the vortex formation dynamics and discuss the effect of CEP- and rotational averaging on the photoelectron momentum distribution. By analyzing how the molecular structure and dynamics is imprinted in the photoelectron spirals, we explore the potential of molecular FEVs for ultrafast spectroscopy.
Collapse
Affiliation(s)
| | - Matthias Wollenhaupt
- Ultrafast Dynamics Group, Institut für Physik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Sparling C, Ruget A, Leach J, Townsend D. Arbitrary image reinflation: A deep learning technique for recovering 3D photoproduct distributions from a single 2D projection. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:023303. [PMID: 35232150 DOI: 10.1063/5.0082744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Many charged particle imaging measurements rely on the inverse Abel transform (or related methods) to reconstruct three-dimensional (3D) photoproduct distributions from a single two-dimensional (2D) projection image. This technique allows for both energy- and angle-resolved information to be recorded in a relatively inexpensive experimental setup, and its use is now widespread within the field of photochemical dynamics. There are restrictions, however, as cylindrical symmetry constraints on the overall form of the distribution mean that it can only be used with a limited range of laser polarization geometries. The more general problem of reconstructing arbitrary 3D distributions from a single 2D projection remains open. Here, we demonstrate how artificial neural networks can be used as a replacement for the inverse Abel transform and-more importantly-how they can be used to directly "reinflate" 2D projections into their original 3D distributions, even in cases where no cylindrical symmetry is present. This is subject to the simulation of appropriate training data based on known analytical expressions describing the general functional form of the overall anisotropy. Using both simulated and real experimental data, we show how our arbitrary image reinflation (AIR) neural network can be utilized for a range of different examples, potentially offering a simple and flexible alternative to more expensive and complicated 3D imaging techniques.
Collapse
Affiliation(s)
- Chris Sparling
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Alice Ruget
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Jonathan Leach
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Dave Townsend
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
7
|
Comby A, Bloch E, Bond CMM, Descamps D, Miles J, Petit S, Rozen S, Greenwood JB, Blanchet V, Mairesse Y. Real-time determination of enantiomeric and isomeric content using photoelectron elliptical dichroism. Nat Commun 2018; 9:5212. [PMID: 30523259 PMCID: PMC6283843 DOI: 10.1038/s41467-018-07609-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
The fast and accurate analysis of chiral chemical mixtures is crucial for many applications but remains challenging. Here we use elliptically-polarized femtosecond laser pulses at high repetition rates to photoionize chiral molecules. The 3D photoelectron angular distribution produced provides molecular fingerprints, showing a strong forward-backward asymmetry which depends sensitively on the molecular structure and degree of ellipticity. Continuously scanning the laser ellipticity and analyzing the evolution of the rich, multi-dimensional molecular signatures allows us to observe real-time changes in the chemical and chiral content present with unprecedented speed and accuracy. We measure the enantiomeric excess of a compound with an accuracy of 0.4% in 10 min acquisition time, and follow the evolution of a mixture with an accuracy of 5% with a temporal resolution of 3 s. This method is even able to distinguish isomers, which cannot be easily distinguished by mass-spectrometry.
Collapse
Affiliation(s)
- A Comby
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405, Talence, France
| | - E Bloch
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405, Talence, France
| | - C M M Bond
- School of Maths and Physics, Queen's University, Belfast, BT7 INN, UK
| | - D Descamps
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405, Talence, France
| | - J Miles
- School of Maths and Physics, Queen's University, Belfast, BT7 INN, UK
| | - S Petit
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405, Talence, France
| | - S Rozen
- Weizmann Institute of Science, Rehovot, 76100, Israel
| | - J B Greenwood
- School of Maths and Physics, Queen's University, Belfast, BT7 INN, UK
| | - V Blanchet
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405, Talence, France
| | - Y Mairesse
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405, Talence, France.
| |
Collapse
|
8
|
Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T, Wollenhaupt M. Electron Vortices in Femtosecond Multiphoton Ionization. PHYSICAL REVIEW LETTERS 2017; 118:053003. [PMID: 28211728 DOI: 10.1103/physrevlett.118.053003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 06/06/2023]
Abstract
Multiphoton ionization of potassium atoms with a sequence of two counter-rotating circularly polarized femtosecond laser pulses produces vortex-shaped photoelectron momentum distributions in the polarization plane describing Archimedean spirals. The pulse sequences are produced by polarization shaping and the three-dimensional photoelectron distributions are tomographically reconstructed from velocity map imaging measurements. We show that perturbative ionization leads to electron vortices with c_{6} rotational symmetry. A change from c_{6} to c_{4} rotational symmetry of the vortices is demonstrated for nonperturbative interaction.
Collapse
Affiliation(s)
- D Pengel
- Carl von Ossietzky Universität Oldenburg, Institut für Physik, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - S Kerbstadt
- Carl von Ossietzky Universität Oldenburg, Institut für Physik, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - D Johannmeyer
- Carl von Ossietzky Universität Oldenburg, Institut für Physik, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - L Englert
- Carl von Ossietzky Universität Oldenburg, Institut für Physik, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - T Bayer
- Carl von Ossietzky Universität Oldenburg, Institut für Physik, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - M Wollenhaupt
- Carl von Ossietzky Universität Oldenburg, Institut für Physik, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| |
Collapse
|
9
|
Photoelectron Circular Dichroism of Bicyclic Ketones from Multiphoton Ionization with Femtosecond Laser Pulses. Chemphyschem 2014; 16:115-37. [DOI: 10.1002/cphc.201402643] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 11/07/2022]
|
10
|
Hockett P, Wollenhaupt M, Lux C, Baumert T. Complete photoionization experiments via ultrafast coherent control with polarization multiplexing. PHYSICAL REVIEW LETTERS 2014; 112:223001. [PMID: 24949763 DOI: 10.1103/physrevlett.112.223001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 06/03/2023]
Abstract
Photoelectron angular distributions (PADs) obtained from ionization of potassium atoms using moderately intense femtosecond IR fields (∼10^{12} W cm^{-2}) of various polarization states are shown to provide a route to "complete" photoionization experiments. Ionization occurs by a net three-photon absorption process, driven via the 4s→4p resonance at the one-photon level. A theoretical treatment incorporating the intrapulse electronic dynamics allows for a full set of ionization matrix elements to be extracted from 2D imaging data. 3D PADs generated from the extracted matrix elements are also compared to experimental, tomographically reconstructed, 3D photoelectron distributions, providing a sensitive test of their validity. Finally, application of the determined matrix elements to ionization via more complex, polarization-shaped, pulses is demonstrated, illustrating the utility of this methodology towards detailed understanding of complex ionization control schemes and suggesting the utility of such "multiplexed" intrapulse processes as powerful tools for measurement.
Collapse
Affiliation(s)
- P Hockett
- National Research Council of Canada, 100 Sussex Drive, Ottawa K1M 1R6, Canada
| | - M Wollenhaupt
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - C Lux
- Institut für Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - T Baumert
- Institut für Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| |
Collapse
|
11
|
Janssen MHM, Powis I. Detecting chirality in molecules by imaging photoelectron circular dichroism. Phys Chem Chem Phys 2014; 16:856-71. [DOI: 10.1039/c3cp53741b] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|