1
|
Cha Y, Ki H, Im D, Lee Y, Lee S, Kim J, Lee JH, Kim J, Ihee H. The carbon-iodine bond cleavage and isomerization of iodoform visualized with femtosecond X-ray liquidography. Chem Sci 2024:d4sc04604h. [PMID: 39483255 PMCID: PMC11523838 DOI: 10.1039/d4sc04604h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
Iodoform (CHI3) has garnered significant attention for its unique ability to induce photo-cyclopropanation of olefins by releasing an iodine radical through C-I bond cleavage. However, the detailed mechanism underlying CHI3 photodissociation is still not fully understood. Here, we elucidate the ultrafast structural dynamics of CHI3 upon photoexcitation using femtosecond time-resolved X-ray liquidography (fs-TRXL) at an X-ray free-electron laser facility. The fs-TRXL data was decomposed into the isotropic and anisotropic data. The isotropic data reveal that the formation of CHI2 and I radicals upon photolysis precedes the emergence of iso-CHI2-I. After a short induction period, two competing geminate recombination pathways of CHI2 and I radicals take place: one pathway leads to the recovery of CHI3, while the other results in the formation of iso-CHI2-I. Additionally, the anisotropic data show how the transient anisotropic distribution of both the species formed upon photoexcitation and the ground-state species depleted upon photoexcitation decays through rotational dephasing. Furthermore, the observed structural dynamics of CHI3 has distinctive differences with that of BiI3, which can be attributed to differences in their central moieties, CH and Bi. Our findings provide insights into the photoinduced reaction dynamics of CHI3, enhancing the understanding of its role in photochemical reactions.
Collapse
Affiliation(s)
- Yongjun Cha
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Hosung Ki
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Donghwan Im
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonggon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Jungmin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory Pohang 37673 Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University 100 Inha-ro, Michuhol-gu Incheon 22212 Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Nimmrich A, Panman MR, Berntsson O, Biasin E, Niebling S, Petersson J, Hoernke M, Björling A, Gustavsson E, van Driel TB, Dohn AO, Laursen M, Zederkof DB, Tono K, Katayama T, Owada S, Nielsen MM, Davidsson J, Uhlig J, Hub JS, Haldrup K, Westenhoff S. Solvent-Dependent Structural Dynamics in the Ultrafast Photodissociation Reaction of Triiodide Observed with Time-Resolved X-ray Solution Scattering. J Am Chem Soc 2023. [PMID: 37163700 PMCID: PMC10375522 DOI: 10.1021/jacs.3c00484] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Resolving the structural dynamics of bond breaking, bond formation, and solvation is required for a deeper understanding of solution-phase chemical reactions. In this work, we investigate the photodissociation of triiodide in four solvents using femtosecond time-resolved X-ray solution scattering following 400 nm photoexcitation. Structural analysis of the scattering data resolves the solvent-dependent structural evolution during the bond cleavage, internal rearrangements, solvent-cage escape, and bond reformation in real time. The nature and structure of the reaction intermediates during the recombination are determined, elucidating the full mechanism of photodissociation and recombination on ultrafast time scales. We resolve the structure of the precursor state for recombination as a geminate pair. Further, we determine the size of the solvent cages from the refined structures of the radical pair. The observed structural dynamics present a comprehensive picture of the solvent influence on structure and dynamics of dissociation reactions.
Collapse
Affiliation(s)
- Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Matthijs R Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Elisa Biasin
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Stephan Niebling
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Jonas Petersson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Maria Hoernke
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Alexander Björling
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Tim B van Driel
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Asmus O Dohn
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
- Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Mads Laursen
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Diana B Zederkof
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jan Davidsson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jens Uhlig
- Department of Chemical Physics, Lund University, Box 124, 22100 Lund, Sweden
| | - Jochen S Hub
- Georg-August-Universität Göttingen, Institute for Microbiology and Genetics, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
- Department of Chemical Physics, Lund University, Box 124, 22100 Lund, Sweden
| |
Collapse
|
3
|
Oang KY, Park S, Moon J, Park E, Lee HK, Sato T, Nozawa S, Adachi SI, Kim J, Kim J, Sohn JH, Ihee H. Extracting Kinetics and Thermodynamics of Molecules without Heavy Atoms via Time-Resolved Solvent Scattering Signals. J Phys Chem Lett 2023; 14:3103-3110. [PMID: 36951437 DOI: 10.1021/acs.jpclett.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Time-resolved X-ray liquidography (TRXL) has emerged as a powerful technique for studying the structural dynamics of small molecules and macromolecules in liquid solutions. However, TRXL has limited sensitivity for small molecules containing light atoms only, whose signal has lower contrast compared with the signal from solvent molecules. Here, we present an alternative approach to bypass this limitation by detecting the change in solvent temperature resulting from a photoinduced reaction. Specifically, we analyzed the heat dynamics of TRXL data obtained from p-hydroxyphenacyl diethyl phosphate (HPDP). This analysis enabled us to experimentally determine the number of intermediates and their respective enthalpy changes, which can be compared to theoretical enthalpies to identify the intermediates. This work demonstrates that TRXL can be used to uncover the kinetics and reaction pathways for small molecules without heavy atoms even if the scattering signal from the solute molecules is buried under the strong solvent scattering signal.
Collapse
Affiliation(s)
- Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Republic of Korea
| | - Sungjun Park
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jiwon Moon
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Eunji Park
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyun Kyung Lee
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jeong-Hun Sohn
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Ahsan MS, Kochetov V, Hein D, Bokarev SI, Wilkinson I. Probing the molecular structure of aqueous triiodide via X-ray photoelectron spectroscopy and correlated electron phenomena. Phys Chem Chem Phys 2022; 24:15540-15555. [PMID: 35713286 DOI: 10.1039/d1cp05840a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liquid-microjet-based X-ray photoelectron spectroscopy was applied to aqueous triiodide solutions, I3-(aq.), to investigate the anion's valence- and core-level electronic structure, ionization dynamics, associated electron-correlation effects, and nuclear geometric structure. The roles of multi-active-electron (shake-up) ionization processes - with noted sensitivity to the solute geometric structure - were investigated through I3-(aq.) solution valence, I 4d, and I 3d core-level measurements. The experimental spectra were interpreted with the aid of simulated photoelectron spectra, built upon multi-reference ab initio electronic structure calculations associated with different I3-(aq.) molecular geometries. A comparison of the single-to-multi-active-electron ionization signal ratios extracted from the experimental and theoretical core-level photoemission spectra suggests that the ground state of the solute adopts a near-linear average geometry in aqueous solutions. This contrasts with the interpretation of time-resolved X-ray solution scattering studies, but is found to be fully consistent with the rest of the solution-phase I3-(aq.) literature. Comparing the results of low- and high-photon-energy photoemission measurements, we further suggest that the aqueous anion adopts a more asymmetric geometry at the aqueous-solution-gas interface than in the aqueous bulk.
Collapse
Affiliation(s)
- Md Sabbir Ahsan
- Department of Locally-Sensitive and Time-Resolved Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany. .,Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Vladislav Kochetov
- Institut für Physik, Universität Rostock, Albert Einstein Str. 23-24, D-18059 Rostock, Germany
| | - Dennis Hein
- Operando Interfacial Photochemistry, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-platz. 1, D-14109 Berlin, Germany.,Department of Physics, Humboldt-Universität zu Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
| | - Sergey I Bokarev
- Institut für Physik, Universität Rostock, Albert Einstein Str. 23-24, D-18059 Rostock, Germany
| | - Iain Wilkinson
- Department of Locally-Sensitive and Time-Resolved Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany.
| |
Collapse
|
5
|
Heo J, Kim JG, Choi EH, Ki H, Ahn DS, Kim J, Lee S, Ihee H. Determining the charge distribution and the direction of bond cleavage with femtosecond anisotropic x-ray liquidography. Nat Commun 2022; 13:522. [PMID: 35082327 PMCID: PMC8792042 DOI: 10.1038/s41467-022-28168-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Energy, structure, and charge are fundamental quantities characterizing a molecule. Whereas the energy flow and structure change in chemical reactions are experimentally characterized, determining the atomic charges of a molecule in solution has been elusive, even for a triatomic molecule such as triiodide ion, I3-. Moreover, it remains to be answered how the charge distribution is coupled to the molecular geometry; which I-I bond, if two I-I bonds are unequal, dissociates depending on the electronic state. Here, femtosecond anisotropic x-ray solution scattering allows us to provide the following answers in addition to the overall rich structural dynamics. The analysis unravels that the negative charge of I3- is highly localized on the terminal iodine atom forming the longer bond with the central iodine atom, and the shorter I-I bond dissociates in the excited state, whereas the longer one in the ground state. We anticipate that this work may open a new avenue for studying the atomic charge distribution of molecules in solution and taking advantage of orientational information in anisotropic scattering data for solution-phase structural dynamics.
Collapse
Affiliation(s)
- Jun Heo
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Eun Hyuk Choi
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Doo-Sik Ahn
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jungmin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seonggon Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Jeong H, Ki H, Kim JG, Kim J, Lee Y, Ihee H. Sensitivity of
time‐resolved
diffraction data to changes in internuclear distances and atomic positions. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Haeyun Jeong
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Jungmin Kim
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| |
Collapse
|
7
|
Choi EH, Lee Y, Heo J, Ihee H. Reaction dynamics studied via femtosecond X-ray liquidography at X-ray free-electron lasers. Chem Sci 2022; 13:8457-8490. [PMID: 35974755 PMCID: PMC9337737 DOI: 10.1039/d2sc00502f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses suitable for pump–probe time-resolved studies with a femtosecond time resolution. Since the advent of the first XFEL in 2009, recent years have witnessed a great number of applications with various pump–probe techniques at XFELs. Among these, time-resolved X-ray liquidography (TRXL) is a powerful method for visualizing structural dynamics in the liquid solution phase. Here, we classify various chemical and biological molecular systems studied via femtosecond TRXL (fs-TRXL) at XFELs, depending on the focus of the studied process, into (i) bond cleavage and formation, (ii) charge distribution and electron transfer, (iii) orientational dynamics, (iv) solvation dynamics, (v) coherent nuclear wavepacket dynamics, and (vi) protein structural dynamics, and provide a brief review on each category. We also lay out a plausible roadmap for future fs-TRXL studies for areas that have not been explored yet. Femtosecond X-ray liquidography using X-ray free-electron lasers (XFELs) visualizes various aspects of reaction dynamics.![]()
Collapse
Affiliation(s)
- Eun Hyuk Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jun Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Ledbetter K, Biasin E, Nunes JPF, Centurion M, Gaffney KJ, Kozina M, Lin MF, Shen X, Yang J, Wang XJ, Wolf TJA, Cordones AA. Photodissociation of aqueous I 3 - observed with liquid-phase ultrafast mega-electron-volt electron diffraction. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:064901. [PMID: 33415183 PMCID: PMC7771998 DOI: 10.1063/4.0000051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 05/26/2023]
Abstract
Developing femtosecond resolution methods for directly observing structural dynamics is critical to understanding complex photochemical reaction mechanisms in solution. We have used two recent developments, ultrafast mega-electron-volt electron sources and vacuum compatible sub-micron thick liquid sheet jets, to enable liquid-phase ultrafast electron diffraction (LUED). We have demonstrated the viability of LUED by investigating the photodissociation of tri-iodide initiated with a 400 nm laser pulse. This has enabled the average speed of the bond expansion to be measured during the first 750 fs of dissociation and the geminate recombination to be directly captured on the picosecond time scale.
Collapse
Affiliation(s)
| | - E. Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J. P. F. Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - M. Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - K. J. Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M. Kozina
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M.-F. Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - X. Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - X. J. Wang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T. J. A. Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A. A. Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
9
|
Kong Q, Khakhulin D, Shkrob IA, Lee JH, Zhang X, Kim J, Kim KH, Jo J, Kim J, Kang J, Pham VT, Jennings G, Kurtz C, Spence R, Chen LX, Wulff M, Ihee H. Solvent-dependent complex reaction pathways of bromoform revealed by time-resolved X-ray solution scattering and X-ray transient absorption spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:064902. [PMID: 31893214 PMCID: PMC6930140 DOI: 10.1063/1.5132968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The photochemical reaction pathways of CHBr3 in solution were unveiled using two complementary X-ray techniques, time-resolved X-ray solution scattering (TRXSS) and X-ray transient absorption spectroscopy, in a wide temporal range from 100 ps to tens of microseconds. By performing comparative measurements in protic (methanol) and aprotic (methylcyclohexane) solvents, we found that the reaction pathways depend significantly on the solvent properties. In methanol, the major photoproducts are CH3OCHBr2 and HBr generated by rapid solvolysis of iso-CHBr2-Br, an isomer of CHBr3. In contrast, in methylcyclohexane, iso-CHBr2-Br returns to CHBr3 without solvolysis. In both solvents, the formation of CHBr2 and Br is a competing reaction channel. From the structural analysis of TRXSS data, we determined the structures of key intermediate species, CH3OCHBr2 and iso-CHBr2-Br in methanol and methylcyclohexane, respectively, which are consistent with the structures from density functional theory calculations.
Collapse
Affiliation(s)
- Qingyu Kong
- Authors to whom correspondence should be addressed: and
| | | | - Ilya A. Shkrob
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, Pohang 37673, South Korea
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | | | | | | | - Van-Thai Pham
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin, 91192 Gif-sur-Yvette, France
| | - Guy Jennings
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Charles Kurtz
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Rick Spence
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | | | - Michael Wulff
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | | |
Collapse
|
10
|
Park S, Choi J, Ki H, Kim KH, Oang KY, Roh H, Kim J, Nozawa S, Sato T, Adachi SI, Kim J, Ihee H. Fate of transient isomer of CH 2I 2: Mechanism and origin of ionic photoproducts formation unveiled by time-resolved x-ray liquidography. J Chem Phys 2019; 150:224201. [PMID: 31202228 DOI: 10.1063/1.5099002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Diiodomethane, CH2I2, in a polar solvent undergoes a unique photoinduced reaction whereby I2 - and I3 - are produced from its photodissociation, unlike for other iodine-containing haloalkanes. While previous studies proposed that homolysis, heterolysis, or solvolysis of iso-CH2I-I, which is a major intermediate of the photodissociation, can account for the formation of I2 - and I3 -, there has been no consensus on its mechanism and no clue for the reason why those negative ionic species are not observed in the photodissociation of other iodine-containing chemicals in the same polar solvent, for example, CHI3, C2H4I2, C2F4I2, I3 -, and I2. Here, using time-resolved X-ray liquidography, we revisit the photodissociation mechanism of CH2I2 in methanol and determine the structures of all transient species and photoproducts involved in its photodissociation and reveal that I2 - and I3 - are formed via heterolysis of iso-CH2I-I in the photodissociation of CH2I2 in methanol. In addition, we demonstrate that the high polarity of iso-CH2I-I is responsible for the unique photochemistry of CH2I2.
Collapse
Affiliation(s)
- Sungjun Park
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jungkweon Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hosung Ki
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Quantum Optics Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | - Heegwang Roh
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, South Korea
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tokushi Sato
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Jeongho Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
11
|
Marcellini M, Nasedkin A, Zietz B, Petersson J, Vincent J, Palazzetti F, Malmerberg E, Kong Q, Wulff M, van der Spoel D, Neutze R, Davidsson J. Transient isomers in the photodissociation of bromoiodomethane. J Chem Phys 2018; 148:134307. [PMID: 29626862 DOI: 10.1063/1.5005595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The photochemistry of halomethanes is fascinating for the complex cascade reactions toward either the parent or newly synthesized molecules. Here, we address the structural rearrangement of photodissociated CH2IBr in methanol and cyclohexane, probed by time-resolved X-ray scattering in liquid solution. Upon selective laser cleavage of the C-I bond, we follow the reaction cascade of the two geminate geometrical isomers, CH2I-Br and CH2Br-I. Both meta-stable isomers decay on different time scales, mediated by solvent interaction, toward the original parent molecule. We observe the internal rearrangement of CH2Br-I to CH2I-Br in cyclohexane by extending the time window up to 3 μs. We track the photoproduct kinetics of CH2Br-I in methanol solution where only one isomer is observed. The effect of the polarity of solvent on the geminate recombination pathways is discussed.
Collapse
Affiliation(s)
- Moreno Marcellini
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Alexandr Nasedkin
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Burkhard Zietz
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Jonas Petersson
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Jonathan Vincent
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| | - Federico Palazzetti
- Universitá di Perugia, Dipartimento di Chimica, Biologia e Biotecnologie, 06123 Perugia, Italy
| | - Erik Malmerberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Qingyu Kong
- Argonne National Laboratory's, Xray Science Division, 9700 S Cass Ave., Argonne, Illinois 60439, USA
| | - Michael Wulff
- European Synchrotron Radiation Facility, B.P. 220, F-380 43 Grenoble Cedex, France
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, P.O. Box 596, SE-751 24 Uppsala, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jan Davidsson
- Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 462, SE-751 20 Uppsala, Sweden
| |
Collapse
|
12
|
Oang KY, Yang C, Muniyappan S, Kim J, Ihee H. SVD-aided pseudo principal-component analysis: A new method to speed up and improve determination of the optimum kinetic model from time-resolved data. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044013. [PMID: 28405591 PMCID: PMC5382018 DOI: 10.1063/1.4979854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/24/2017] [Indexed: 05/22/2023]
Abstract
Determination of the optimum kinetic model is an essential prerequisite for characterizing dynamics and mechanism of a reaction. Here, we propose a simple method, termed as singular value decomposition-aided pseudo principal-component analysis (SAPPA), to facilitate determination of the optimum kinetic model from time-resolved data by bypassing any need to examine candidate kinetic models. We demonstrate the wide applicability of SAPPA by examining three different sets of experimental time-resolved data and show that SAPPA can efficiently determine the optimum kinetic model. In addition, the results of SAPPA for both time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) data of the same protein reveal that global structural changes of protein, which is probed by TRXSS, may occur more slowly than local structural changes around the chromophore, which is probed by TA spectroscopy.
Collapse
Affiliation(s)
| | | | | | - Jeongho Kim
- Department of Chemistry, Inha University , Incheon 22212, South Korea
| | | |
Collapse
|
13
|
Kim J, Kim KH, Oang KY, Lee JH, Hong K, Cho H, Huse N, Schoenlein RW, Kim TK, Ihee H. Tracking reaction dynamics in solution by pump–probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering). Chem Commun (Camb) 2016; 52:3734-49. [DOI: 10.1039/c5cc08949b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TRXL and TRXAS are powerful techniques for real-time probing of structural and electronic dynamics of photoinduced reactions in solution phase.
Collapse
|
14
|
Oang KY, Kim KH, Jo J, Kim Y, Kim JG, Kim TW, Jun S, Kim J, Ihee H. Sub-100-ps structural dynamics of horse heart myoglobin probed by time-resolved X-ray solution scattering. Chem Phys 2014; 422:137-142. [PMID: 25678733 PMCID: PMC4323384 DOI: 10.1016/j.chemphys.2014.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we report sub-100-ps structural dynamics of horse heart myoglobin revealed by time-resolved X-ray solution scattering. By applying the time-slicing scheme to the measurement and subsequent deconvolution, we investigate the protein structural dynamics that occur faster than the X-ray temporal pulse width of synchrotrons (~100 ps). The singular value decomposition analysis of the experimental data suggests that two structurally distinguishable intermediates are formed within 100 ps. In particular, the global structural change occurring on the time scale of 70 ps is identified.
Collapse
Affiliation(s)
- Key Young Oang
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Kyung Hwan Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Junbeom Jo
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Youngmin Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Jong Goo Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Tae Wu Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Sunhong Jun
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon 402-751, Republic of Korea
| | - Hyotcherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| |
Collapse
|
15
|
Hwan Kim K, Kim J, Hyuk Lee J, Ihee H. Topical Review: Molecular reaction and solvation visualized by time-resolved X-ray solution scattering: Structure, dynamics, and their solvent dependence. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2014; 1:011301. [PMID: 26798770 PMCID: PMC4711596 DOI: 10.1063/1.4865234] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/17/2014] [Indexed: 05/16/2023]
Abstract
Time-resolved X-ray solution scattering is sensitive to global molecular structure and can track the dynamics of chemical reactions. In this article, we review our recent studies on triiodide ion (I3 (-)) and molecular iodine (I2) in solution. For I3 (-), we elucidated the excitation wavelength-dependent photochemistry and the solvent-dependent ground-state structure. For I2, by combining time-slicing scheme and deconvolution data analysis, we mapped out the progression of geminate recombination and the associated structural change in the solvent cage. With the aid of X-ray free electron lasers, even clearer observation of ultrafast chemical events will be made possible in the near future.
Collapse
Affiliation(s)
| | - Jeongho Kim
- Department of Chemistry, Inha University , Incheon 402-751, South Korea
| | - Jae Hyuk Lee
- Department of Chemistry, KAIST , Daejeon 305-701, South Korea
| | | |
Collapse
|