1
|
Yoon H, Park S, Koninti RK, Lim M. Photoexcitation Dynamics of 4-Aminopthalimide in Solution Investigated Using Femtosecond Time-Resolved Infrared Spectroscopy. Int J Mol Sci 2024; 25:11038. [PMID: 39456819 PMCID: PMC11507449 DOI: 10.3390/ijms252011038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Excited-state intramolecular proton transfer (ESIPT) reactions are crucial in photoresponsive materials and fluorescent markers. The fluorescent compound 4-aminophthalimide (4-AP) has been reported to exhibit solvent-assisted ESIPT in protic solvents, such as methanol, wherein the solvent interacts with 4-AP to form a six-membered hydrogen-bonded ring that is strengthened upon excitation. Although the controversial observation of ESIPT in 4-AP has been extensively studied, the molecular mechanism has yet to be fully explored. In this study, femtosecond infrared spectroscopy was used to investigate the dynamics of 4-AP in methanol and acetonitrile after excitation at 350 and 300 nm, which promoted 4-AP to the S1 and S2 states, respectively. The excited 4-AP in the S1 state relaxed to the ground state, while 4-AP in the S2 state relaxed via the S1 state without the occurrence of ESIPT. The enol form of 4-AP (Enol 4-AP) in the S1 state was calculated to be ~10 kcal/mol higher in energy than the keto form in the S1 state, indicating that keto-to-enol tautomerization was endergonic, ultimately resulting in no observable ESIPT for 4-AP in the S1 state. Upon the excitation of 4-AP to the S2 state, the transition to Enol-4-AP in the S1 state was found to be exergonic; however, ESIPT must compete with an internal conversion from the S2 to the S1 state. The internal S2 → S1 conversion was significantly faster than the solvent-assisted ESIPT, resulting in a negligible ESIPT for the 4-AP excited to the S2 state. The detailed excitation dynamics of 4-AP clearly reveal the molecular mechanism underlying its negligible ESIPT, despite the fact that it forms a favorable structure for solvent-assisted ESIPT.
Collapse
Affiliation(s)
| | | | | | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (S.P.); (R.K.K.)
| |
Collapse
|
2
|
Qiao T, Shi W, Zhuang H, Zhao G, Xin X, Li Y. Effects of substitution and conjugation on photophysical properties of ESIPT-based fluorophores with the core of 4-aminophthalimide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123802. [PMID: 38184881 DOI: 10.1016/j.saa.2023.123802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
4-Aminophthalimide is a highly fluorescent signaling unit with excellent photophysical properties and wide application foregrounds. Based on this, a range of theoretical investigations are conducted on the fluorescent probe (E)-5-((2-hydroxybenzylidene) amino) isoindoline-1, 3-dione (HID) with the core of 4-aminophthalimide using density functional theory (DFT) and time-containing density functional theory (TD-DFT) methods in this paper. The optimized configurations, vertical excitation and emission energies, electronic characteristics and excited-state intramolecular proton transfer (ESIPT) behaviors of the probe HID are discussed in detail. Furthermore, to enhance the luminescent properties of HID, five novel compounds have been designed based on the structure of HID by introducing amino, methoxy and naphthalene groups (-NH2, -OMe and C10H8). Our work thoroughly explores how the property and position of substituents and conjugation affect photophysical characteristics and ESIPT processes. We find that the ESIPT dynamics can be modulated by the substitution and conjugation effects. Specifically, the introduction of amino and methoxy groups at the ortho-position and the introduction of the naphthalene group promote the ESIPT behavior of HID1, whereas the introduction of amino and methoxy groups at the meta-position exhibits the contrary impact. Therefore, we boldly infer that the introduction of electron-donating groups in the ortho-position and the introduction of the conjugated group make the ESIPT process more effortless to occur, whereas the introduction of substituents with opposing natures in the meta-position makes the ESIPT process more difficult to occur. In addition, the ionization potentials (IP), electron affinities (EA) and reorganization energies (λh and λe) of molecules are calculated to assess their potential as luminescent materials. Our work not only reveals the luminescence and ESIPT mechanism of the probe HID1, but also proposes to modulate the ESIPT process through the substitution and conjugation effects. In particular, the designed molecules have better photoelectric properties as a result of their red-shifted absorption and fluorescence spectra, smaller energy gaps, larger transferred charges and greater charge transferred distances, which offers some valuable ideas for the experimental development of more efficient organic luminescent materials with ESIPT properties.
Collapse
Affiliation(s)
- Tiantian Qiao
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Wei Shi
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Hongbin Zhuang
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Guijie Zhao
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Xin Xin
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Yongqing Li
- School of Physics, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
3
|
Filer CN. Luminescence enhancement by deuterium. J Labelled Comp Radiopharm 2023; 66:372-383. [PMID: 37587721 DOI: 10.1002/jlcr.4056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
Created literally at the dawn of time, deuterium has been extremely valuable in so many chemistry roles. The subject of this review focuses on one deuterium application in particular: its enhancement of luminescence in many substances. After providing general overviews of both deuterium and luminescence, the early exploration of deuterium's effect on luminescence is described, followed by a number of specific topics. These sections include a discussion of deuterium-influenced luminescence for dyes, proteins, singlet oxygen, and the lanthanide elements, as well as anomalous inverse deuterium luminescence effects. Future directions for this important research topic are also proposed, as well as a summary conclusion.
Collapse
|
4
|
Sultana T, Mahato M, Tohora N, Das A, Datta P, Das SK. Phthalimide‐Based Off‐On‐Off Fluorosensor for Cascade Detection of Cyanide Ions and Picric Acid. ChemistrySelect 2023. [DOI: 10.1002/slct.202204388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Tuhina Sultana
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| | - Manas Mahato
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| | - Najmin Tohora
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| | - Ankita Das
- Centre for Healthcare Science and Technology Indian Institute of Engineering Science and Technology West Bengal 711103 India
| | - Pallab Datta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research Kolkata West Bengal 700054 India
| | - Sudhir Kumar Das
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling, West Bengal 734013 India
| |
Collapse
|
5
|
Ortega-Valdovinos LR, Yatsimirsky AK. Probing the Role of the Bridging Nitrogen in the Signaling Mechanism of an Anthracene-Boronic Acid Sugar Sensor and a Different Version of the PET-Based Mechanism. J Org Chem 2023; 88:4662-4674. [PMID: 36929906 DOI: 10.1021/acs.joc.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The N-quaternized derivative 5 of the James-Shinkai anthracene-boronic acid fluorescence sugar sensor 1 was prepared to probe the role of the bridging nitrogen in the signaling mechanism of 1. Both 5 and 1 contain positively charged bridging groups NMe+ or NH+, respectively, but 5 lacks the ability to form the intramolecular ammonium-boronate doubly ionic hydrogen bond present in 1. Receptors 1 and 5 display opposite fluorescence vs pH profiles with a small turn-on effect of the sugar binding to the zwitterion of 5 in contrast to a large effect observed with 1. It is concluded that the ammonium-boronate hydrogen bond is essential for the signaling mechanism of 1. Its possible function is enabling the PET quenching effect by shifting the NH+ proton toward boronate anion inside the hydrogen bond, the degree of which is modulated by the ester formation with diols affecting the basicity of boronate anion. This mechanism agrees with observed signaling selectivity of 1 toward a series of di- and polyols of variable structures as well as with the behavior of 1 in buffered D2O and methanol solvents at controlled pH and provides an addition to the established "loose bolt" mechanism signaling mode essential for receptors with nonpolar fluorophores.
Collapse
Affiliation(s)
| | - Anatoly K Yatsimirsky
- Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| |
Collapse
|
6
|
Ahamed S, Mahato M, Tohora N, Sultana T, Sahoo R, Ghanta S, Das SK. A PET and ESIPT-communicated ratiometric, turn-on chromo-fluorogenic sensor for rapid and sensitive detection of sarin gas mimic, diethylchlorophosphate. Talanta 2023; 258:124448. [PMID: 36940571 DOI: 10.1016/j.talanta.2023.124448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Fast and precise identification of toxic G-series nerve agents in the solution and vapor phase is urgently needed to save human beings from unwanted wars and terrorist attacks, which is challenging to execute practically. In this article, we have designed and synthesized a sensitive and selective phthalimide-based chromo-fluorogenic sensor, DHAI, by a simple condensation process that shows ratiometric and turns on chromo-fluorogenic behavior towards Sarin gas mimic diethylchlorophosphate (DCP) in liquid and vapor phases, respectively. A colorimetric change, from yellow to colorless, is observed in the DHAI solution due to the introduction of DCP in daylight. A remarkable cyan color photoluminescence enhancement is noticed in the presence of DCP in the DHAI solution, which is observable to the naked under a portable 365 nm UV lamp. The mechanistic aspects of the detection of DCP by employing DHAI have been revealed by time-resolved photoluminescence decay analysis and 1H NMR titration investigation. Our probe DHAI exhibits linear photoluminescence enhancement from 0 to 500 μM with a detection limit of nanomolar range from non-aqueous to semi-aqueous media. For practical utility, a DHAI-stained test kit employing Whatman-41 filter paper has been fabricated and used as a portable and displayable photonic device for on-site detection of Sarin gas surrogate, DCP. Also, a dip-stick experiment has been demonstrated to identify the vapor of Sarin gas mimics DCP colorimetrically and fluorometrically. The concentrations of DCP in various water samples have been evaluated with the help of a standard fluorescence curve for real sample analysis.
Collapse
Affiliation(s)
- Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Rajkumar Sahoo
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, Tripura, 799046, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
7
|
A 4-Aminophthalimide Derive Smart Molecule for Sequential Detection of Aluminum Ions and Picric Acid. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Sultana T, Mahato M, Tohora N, Ahamed S, Pramanik P, Ghanta S, Kumar Das S. A Phthalimide-based Turn on Fluorosensor for Selective and Rapid Detection of G-Series Nerve Agent’s Mimics. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Mandić L, Džeba I, Jadreško D, Mihaljević B, Biczók L, Basarić N. Photophysical properties and electron transfer photochemical reactivity of substituted phthalimides. NEW J CHEM 2020. [DOI: 10.1039/d0nj03465g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Substituents on phthalimide affect its photophysics and photochemical reactivity. Electron donors generally result in low quantum yields of intersystem crossing and reactivity from singlet excited states.
Collapse
Affiliation(s)
- Leo Mandić
- Department of Organic Chemistry and Biochemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
- Department of Material Chemistry
| | - Iva Džeba
- Department of Material Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| | - Dijana Jadreško
- Division for Marine and Environmental Research
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| | - Branka Mihaljević
- Department of Material Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| | - László Biczók
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- 1519 Budapest
- Hungary
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| |
Collapse
|
10
|
Angiolini L, Cohen B, Douhal A. Ultrafast dynamics of the antibiotic Rifampicin in solution. Photochem Photobiol Sci 2019; 18:80-91. [DOI: 10.1039/c8pp00192h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafast time-resolved studies demonstrate that intra- and intermolecular H-bonds with water molecules act synergistically to stabilize the active zwitterionic form of Rifampicin, an effective antibiotic against mycobacterial infections.
Collapse
Affiliation(s)
- Lorenzo Angiolini
- Departamento de Química Física
- Facultad de Ciencias Ambientales y Bioquímica and INAMOL
- Universidad de Castilla-La Mancha
- 45071 Toledo
- Spain
| | - Boiko Cohen
- Departamento de Química Física
- Facultad de Ciencias Ambientales y Bioquímica and INAMOL
- Universidad de Castilla-La Mancha
- 45071 Toledo
- Spain
| | - Abderrazzak Douhal
- Departamento de Química Física
- Facultad de Ciencias Ambientales y Bioquímica and INAMOL
- Universidad de Castilla-La Mancha
- 45071 Toledo
- Spain
| |
Collapse
|
11
|
Wang L, Fujii M, Yamaji M, Okamoto H. Fluorescence behaviour of 2-, 3- and 4-amino-1,8-naphthalimides: effects of the substitution positions of the amino functionality on the photophysical properties. Photochem Photobiol Sci 2018; 17:1319-1328. [DOI: 10.1039/c8pp00302e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
2-Amino-1,8-naphthalimide showed blue fluorescence independent of the microenvironment of the solvents whereas the corresponding 3- and 4-amino derivatives displayed marked positive solvatofluorochromism.
Collapse
Affiliation(s)
- Lei Wang
- Division of Earth
- Life
- and Molecular Sciences
- Graduate School of Natural Science and Technology
- Okayama University
| | - Mayu Fujii
- Division of Earth
- Life
- and Molecular Sciences
- Graduate School of Natural Science and Technology
- Okayama University
| | - Minoru Yamaji
- Division of Molecular Science
- Graduate School of Science and Engineering
- Gunma University
- Ohta 373-0057
- Japan
| | - Hideki Okamoto
- Division of Earth
- Life
- and Molecular Sciences
- Graduate School of Natural Science and Technology
- Okayama University
| |
Collapse
|
12
|
Fujii M, Namba M, Yamaji M, Okamoto H. Solvent-induced multicolour fluorescence of amino-substituted 2,3-naphthalimides studied by fluorescence and transient absorption measurements. Photochem Photobiol Sci 2016; 15:842-50. [DOI: 10.1039/c6pp00048g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amino-substituted 2,3-naphthalimide derivatives showed marked positive solvatofluorochromism, and the fluorescence emission was effectively quenched in methanol via the internal conversion process.
Collapse
Affiliation(s)
- Mayu Fujii
- Division of Earth
- Life
- and Molecular Sciences
- Graduate School of Natural Science and Technology
- Okayama University
| | - Misa Namba
- Division of Earth
- Life
- and Molecular Sciences
- Graduate School of Natural Science and Technology
- Okayama University
| | - Minoru Yamaji
- Division of Molecular Science
- Graduate School of Science and Engineering
- Gunma University
- Kiryu
- Japan
| | - Hideki Okamoto
- Division of Earth
- Life
- and Molecular Sciences
- Graduate School of Natural Science and Technology
- Okayama University
| |
Collapse
|
13
|
Soumya S, Seth S, Paul S, Samanta A. Contrasting Response of Two Dipolar Fluorescence Probes in a Leucine-Based Organogel and Its Implications. Chemphyschem 2015; 16:2440-6. [PMID: 26073751 DOI: 10.1002/cphc.201500316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/09/2022]
Abstract
The microenvironments of a leucine-based organogel are probed by monitoring the fluorescence behavior of coumarin 153 (C153) and 4-aminophthalimide (AP). The steady-state data reveals distinctly different locations of the two molecules in the gel. Whereas AP resides close to the hydroxyl moieties of the gelator and engages in hydrogen-bonding interactions, C153 is found in bulk-toluene-like regions. In contrast to C153, AP exhibits excitation-wavelength-dependent emission, indicating that the environments of the hydrogen-bonded AP molecules are not all identical. A two-component fluorescence decay of AP in gel, unlike C153, supports this model. A time-resolved fluorescence anisotropy study of the rotational motion of the molecules also reveals the strong association of only AP with the gelator. That AP influences the critical gelation concentration implies its direct involvement in the gel-formation process. The results highlight the importance of guest-gelator interactions in gels containing guest molecules.
Collapse
Affiliation(s)
- Sivalingam Soumya
- School of Chemistry, University of Hyderabad, Hyderabad 500046 (India)
| | - Sudipta Seth
- School of Chemistry, University of Hyderabad, Hyderabad 500046 (India)
| | - Sneha Paul
- School of Chemistry, University of Hyderabad, Hyderabad 500046 (India)
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad 500046 (India).
| |
Collapse
|