1
|
Puyo-Fourtine J, Juillé M, Hénin J, Clavaguéra C, Duboué-Dijon E. Consistent Picture of Phosphate-Divalent Cation Binding from Models with Implicit and Explicit Electronic Polarization. J Phys Chem B 2022; 126:4022-4034. [PMID: 35608554 DOI: 10.1021/acs.jpcb.2c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of divalent cations to the ubiquitous phosphate group is essential for a number of key biological processes, such as DNA compaction, RNA folding, or interactions of some proteins with membranes. Yet, probing their binding sites, modes, and associated binding free energy is a challenge for both experiments and simulations. In simulations, standard force fields strongly overestimate the interaction between phosphate groups and divalent cations. Here, we examine how different strategies to include electronic polarization effects in force fields─implicitly, through the use of scaled charges or pair-specific Lennard-Jones parameters, or explicitly, with the polarizable force fields Drude and AMOEBA─capture the interactions of a model phosphate compound, dimethyl phosphate, with calcium and magnesium divalent cations. We show that both implicit and explicit approaches, when carefully parameterized, are successful in capturing the overall binding free energy and that common trends emerge from the comparison of different simulation approaches. Overall, the binding is very moderate, slightly weaker for Ca2+ than Mg2+, and the solvent-shared ion pair is slightly more stable than the contact monodentate ion pair. The bidentate ion pair is higher in energy (or even fully unstable for Mg2+). Our results thus suggest practical ways to capture the divalent cations with biomolecular phosphate groups in complex biochemical systems. In particular, the computational efficiency of implicit models makes them ideally suited for large-scale simulations of biological assemblies, with improved accuracy compared to state-of-the-art fixed-charge force fields.
Collapse
Affiliation(s)
- Julie Puyo-Fourtine
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Marie Juillé
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Jérôme Hénin
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Elise Duboué-Dijon
- CNRS, Université Paris Cité, UPR9080, Laboratoire de Biochimie Théorique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut de Biologie Physico-Chimique - Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| |
Collapse
|
2
|
Clavaguéra C, Thaunay F, Ohanessian G. Manifolds of low energy structures for a magic number of hydrated sulfate: SO 42-(H 2O) 24. Phys Chem Chem Phys 2021; 23:24428-24438. [PMID: 34693943 DOI: 10.1039/d1cp03123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low energy structures of SO42-(H2O)24 have been obtained using a combination of classical molecular dynamics simulations and refinement of structures and energies by quantum chemical calculations. Extensive exploration of the potential energy surface led to a number of low-energy structures, confirmed by accurate calibration calculations. An overall analysis of this large set was made after devising appropriate structural descriptors such as the numbers of cycles and their combinations. Low energy structures bear common motifs, the most prominent being fused cycles involving alternatively four and six water molecules. The latter adopt specific conformations which ensure the appropriate surface curvature to form a closed cage without dangling O-H bonds and at the same time provide 12-coordination of the sulfate ion. A prominent feature to take into account is isomerism via inversion of hydrogen bond orientations along cycles. This generates large families of ca. 100 isomers for this cluster size, spanning energy windows of 10-30 kJ mol-1. This relatively ignored isomerism must be taken into account to identify reliably the lowest energy minima. The overall picture is that the magic number cluster SO42-(H2O)24 does not correspond to formation of a single, remarkable structure, but rather to a manifold of structural families with similar stabilities. Extensive calculations on isomerization mechanisms within a family indicate that large barriers are associated to direct inversion of hydrogen bond networks. Possible implications of these results for magic number clusters of other anions are discussed.
Collapse
Affiliation(s)
- Carine Clavaguéra
- Institut de Chimie Physique, Université Paris-Saclay - CNRS, UMR 8000, 91405 Orsay, France.
| | - Florian Thaunay
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
| | - Gilles Ohanessian
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
| |
Collapse
|
3
|
Duboué-Dijon E, Hénin J. Building intuition for binding free energy calculations: Bound state definition, restraints, and symmetry. J Chem Phys 2021; 154:204101. [PMID: 34241173 DOI: 10.1063/5.0046853] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The theory behind computation of absolute binding free energies using explicit-solvent molecular simulations is well-established, yet somewhat complex, with counter-intuitive aspects. This leads to frequent frustration, common misconceptions, and sometimes erroneous numerical treatment. To improve this, we present the main practically relevant segments of the theory with constant reference to physical intuition. We pinpoint the role of the implicit or explicit definition of the bound state (or the binding site) to make a robust link between an experimental measurement and a computational result. We clarify the role of symmetry and discuss cases where symmetry number corrections have been misinterpreted. In particular, we argue that symmetry corrections as classically presented are a source of confusion and could be advantageously replaced by restraint free energy contributions. We establish that contrary to a common intuition, partial or missing sampling of some modes of symmetric bound states does not affect the calculated decoupling free energies. Finally, we review these questions and pitfalls in the context of a few common practical situations: binding to a symmetric receptor (equivalent binding sites), binding of a symmetric ligand (equivalent poses), and formation of a symmetric complex, in the case of homodimerization.
Collapse
Affiliation(s)
- E Duboué-Dijon
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - J Hénin
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
4
|
Gresh N, Perahia D. Multimolecular complexes of the phosphodiester anion with Zn(II) or Mg(II) and water molecules-Preliminary validations of a polarizable potential by ab initio quantum chemistry. J Comput Chem 2021; 42:1430-1446. [PMID: 34101861 DOI: 10.1002/jcc.26555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/06/2022]
Abstract
Dimethyl phosphate (DMP- ) is a model for the phosphodiester backbone of DNA, RNA, and phospholipids. It is central for the binding of divalent cations and water along the backbone of nucleic acids. Significant polarization and charge-transfer contributions and nonadditivity come into play in the multimolecular complexes organized around phosphate. Prior to large-scale molecular dynamics (MD) with advanced polarizable potentials, it is essential to evaluate how well the values and trends of intermolecular interaction energies (ΔE) from ab initio quantum chemistry (QC) and their individual contributions are reproduced in a diversity of such complexes. These differ by the starting binding modes of a divalent cation, Zn(II), namely direct, bi- or mono-dentate to anionic and/or ester oxygens, versus through-water binding. We present first the results from automated refinements of the individual contributions of the SIBFA potential with respect to their QC counterparts using a Zn(II) or a water probe. This is followed by validations on eight relaxed multimolecular complexes of DMP- with Zn(II) or Mg(II) and seven waters, then on sixteen complexes of DMP- with Zn(II) and eight waters in arrangements extracted from MD or energy-minimization on a droplet of sixty-four waters. This monitors the compared evolutions of SIBFA and QC ΔE and their individual contributions in the competing arrangements. Some waters, bridging Zn(II) and DMP- , were found to have exceptionally large dipole moments, of up to 3.8 Debye. The perspectives of extension to a flexible phosphodiester backbone are discussed in the context of the SIBFA potential for DNA and RNA.
Collapse
Affiliation(s)
- Nohad Gresh
- Laboratoire de Chimie Théorique, UMR 7616 CNRS, Sorbonne Université, Paris, France
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquées, UMR 8113 CNRS, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Duboué-Dijon E, Javanainen M, Delcroix P, Jungwirth P, Martinez-Seara H. A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization. J Chem Phys 2021; 153:050901. [PMID: 32770904 DOI: 10.1063/5.0017775] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular simulations can elucidate atomistic-level mechanisms of key biological processes, which are often hardly accessible to experiment. However, the results of the simulations can only be as trustworthy as the underlying simulation model. In many of these processes, interactions between charged moieties play a critical role. Current empirical force fields tend to overestimate such interactions, often in a dramatic way, when polyvalent ions are involved. The source of this shortcoming is the missing electronic polarization in these models. Given the importance of such biomolecular systems, there is great interest in fixing this deficiency in a computationally inexpensive way without employing explicitly polarizable force fields. Here, we review the electronic continuum correction approach, which accounts for electronic polarization in a mean-field way, focusing on its charge scaling variant. We show that by pragmatically scaling only the charged molecular groups, we qualitatively improve the charge-charge interactions without extra computational costs and benefit from decades of force field development on biomolecular force fields.
Collapse
Affiliation(s)
- E Duboué-Dijon
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - M Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - P Delcroix
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - P Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| | - H Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 166 10, Czech Republic
| |
Collapse
|
6
|
Aqueous Contact Ion Pairs of Phosphate Groups with Na+, Ca2+ and Mg2+ – Structural Discrimination by Femtosecond Infrared Spectroscopy and Molecular Dynamics Simulations. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
The extent of contact and solvent shared ion pairs of phosphate groups with Na+, Ca2+ and Mg2+ ions in aqueous environment and their relevance for the stability of polyanionic DNA and RNA structures is highly debated. Employing the asymmetric phosphate stretching vibration of dimethyl phosphate (DMP), a model system of the sugar-phosphate backbone of DNA and RNA, we present linear infrared, femtosecond infrared pump-probe and absorptive 2D-IR spectra that report on contact ion pair formation via the presence of blue shifted spectral signatures. Compared to the linear infrared spectra, the nonlinear spectra reveal contact ion pairs with increased sensitivity because the spectra accentuate differences in peak frequency, transition dipole moment strength, and excited state lifetime. The experimental results are corroborated by long time scale MD simulations, benchmarked by density functional simulations on phosphate-ion-water clusters. The microscopic interpretation reveals subtle structural differences of ion pairs formed by the phosphate group and the ions Na+, Ca2+ and Mg2+. Intricate properties of the solvation shell around the phosphate group and the ion are essential to explain the experimental observations. The present work addresses a challenging to probe topic with the help of a model system and establishes new experimental data of contact ion pair formation, thereby underlining the potential of nonlinear 2D-IR spectroscopy as an analytical probe of phosphate-ion interactions in complex biological systems.
Collapse
|
7
|
Mendes de Oliveira D, Zukowski SR, Palivec V, Hénin J, Martinez-Seara H, Ben-Amotz D, Jungwirth P, Duboué-Dijon E. Binding of divalent cations to acetate: molecular simulations guided by Raman spectroscopy. Phys Chem Chem Phys 2020; 22:24014-24027. [DOI: 10.1039/d0cp02987d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We combine Raman-MCR vibrational spectroscopy experiments with ab initio and classical MD simulations to gain molecular insights into carboxylate–cation binding.
Collapse
Affiliation(s)
| | | | - Vladimir Palivec
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| | - Jérôme Hénin
- CNRS, Université de Paris
- UPR 9080
- Laboratoire de Biochimie Théorique
- 13 Rue Pierre et Marie Curie
- Paris
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| | - Dor Ben-Amotz
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| | - Elise Duboué-Dijon
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Flemingovo nám. 2
- 16610 Prague 6
- Czech Republic
| |
Collapse
|
8
|
Long MP, Alland S, Martin ME, Isborn CM. Molecular dynamics simulations of alkaline earth metal ions binding to DNA reveal ion size and hydration effects. Phys Chem Chem Phys 2020; 22:5584-5596. [DOI: 10.1039/c9cp06844a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Classical molecular dynamics simulations reveal size-dependent trends of alkaline earth metal ions binding to DNA are due to ion size and hydration behavior.
Collapse
Affiliation(s)
| | - Serra Alland
- Department of Chemistry and Biochemistry
- University of Central Arkansas
- Arkansas 72035
- USA
| | - Madison E. Martin
- Department of Chemistry and Biochemistry
- University of Central Arkansas
- Arkansas 72035
- USA
| | | |
Collapse
|
9
|
Villa F, MacKerell AD, Roux B, Simonson T. Classical Drude Polarizable Force Field Model for Methyl Phosphate and Its Interactions with Mg 2. J Phys Chem A 2018; 122:6147-6155. [PMID: 29966419 PMCID: PMC6062457 DOI: 10.1021/acs.jpca.8b04418] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphate groups are essential components of nucleic acids and proteins, whose interactions with solvent, metal ions, and ionic side chains help control folding and binding. Methyl phosphate (MP) represents a simple analog of phosphate moieties that are post-translation modifications in proteins and present at the termini of nucleic acids, among other environments. In the present study, we optimized parameters for use in polarizable molecular dynamics simulations of MP in its mono- and dianionic forms, MP- ≡ CH3HPO4- and MP2- ≡ CH3PO42-, along with P i2- ≡ HPO42-, in the context of the classical Drude oscillator model. Parameter optimization was done in a manner consistent with the remainder of the Drude molecular mechanics force field, choosing atomic charges and polarizabilities to reproduce molecular properties from quantum mechanics as well as experimental hydration free energies. Optimized parameters were similar to existing dimethyl phosphate parameters, with a few significant differences. The developed parameters were then used to compute magnesium binding affinities in aqueous solution, using alchemical molecular dynamics free energy simulations. Good agreement with experiment was obtained, and outer sphere binding was shown to be predominant for MP- and MP2-.
Collapse
Affiliation(s)
- Francesco Villa
- Laboratoire de Biochimie, CNRS UMR7654, Ecole Polytechnique , Palaiseau 91128 , France
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology , University of Chicago , Chicago , Illinois 60637 , United States
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Thomas Simonson
- Laboratoire de Biochimie, CNRS UMR7654, Ecole Polytechnique , Palaiseau 91128 , France
| |
Collapse
|
10
|
Thaunay F, Jana C, Clavaguéra C, Ohanessian G. Strategy for Modeling the Infrared Spectra of Ion-Containing Water Drops. J Phys Chem A 2018; 122:832-842. [PMID: 29266957 DOI: 10.1021/acs.jpca.7b10554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrated ions are ubiquitous in environmental and biological media. Understanding the perturbation exerted by an ion on the water hydrogen bond network is possible in the nanodrop regime by recording vibrational spectra in the O-H bond stretching region. This has been achieved experimentally in recent years by forming gaseous ions containing tens to hundreds of water molecules and recording their infrared photodissociation spectra. In this paper, we demonstrate the capabilities of a modeling strategy based on an extension of the AMOEBA polarizable force field to implement water atomic charge fluctuations along with those of intramolecular structure along the dynamics. This supplementary flexibility of nonbonded interactions improves the description of the hydrogen bond network and, therefore, the spectroscopic response. Finite temperature IR spectra are obtained from molecular dynamics simulations by computing the Fourier transform of the dipole moment autocorrelation function. Simulations of 1-2 ns are required for extensive sampling in order to reproduce the experimental spectra. Furthermore, bands are assigned with the driven molecular dynamics approach. This method package is shown to compare successfully with experimental spectra for 11 ions in water drops containing 36-100 water molecules. In particular, band frequency shifts of the free O-H stretching modes at the cluster surface are well reproduced as a function of both ion charge and drop size.
Collapse
Affiliation(s)
- Florian Thaunay
- LCM, CNRS, Ecole Polytechnique, Université Paris Saclay , 91128 Palaiseau, France
| | - Chandramohan Jana
- LCM, CNRS, Ecole Polytechnique, Université Paris Saclay , 91128 Palaiseau, France
| | - Carine Clavaguéra
- Laboratoire de Chimie Physique, Université Paris Sud - CNRS, Université Paris Saclay , 15, avenue Jean Perrin, 91405 Orsay Cedex, France
| | - Gilles Ohanessian
- LCM, CNRS, Ecole Polytechnique, Université Paris Saclay , 91128 Palaiseau, France
| |
Collapse
|
11
|
Casalino L, Palermo G, Abdurakhmonova N, Rothlisberger U, Magistrato A. Development of Site-Specific Mg(2+)-RNA Force Field Parameters: A Dream or Reality? Guidelines from Combined Molecular Dynamics and Quantum Mechanics Simulations. J Chem Theory Comput 2016; 13:340-352. [PMID: 28001405 DOI: 10.1021/acs.jctc.6b00905] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vital contribution of Mg2+ ions to RNA biology is challenging to dissect at the experimental level. This calls for the integrative support of atomistic simulations, which at the classical level are plagued by limited accuracy. Indeed, force fields intrinsically neglect nontrivial electronic effects that Mg2+ exerts on its surrounding ligands in varying RNA coordination environments. Here, we present a combined computational study based on classical molecular dynamics (MD) and Density Functional Theory (DFT) calculations, aimed at characterizing (i) the performance of five Mg2+ force field (FF) models in RNA systems and (ii) how charge transfer and polarization affect the binding of Mg2+ ions in different coordination motifs. As a result, a total of ∼2.5 μs MD simulations (100/200 ns for each run) for two prototypical Mg2+-dependent ribozymes showed remarkable differences in terms of populations of inner-sphere coordination site types. Most importantly, complementary DFT calculations unveiled that differences in charge transfer and polarization among recurrent Mg2+-RNA coordination motifs are surprisingly small. In particular, the charge of the Mg2+ ions substantially remains constant through different coordination sites, suggesting that the common philosophy of developing site-specific Mg2+ ion parameters is not in line with the physical origin of the Mg2+-RNA MD simulations inaccuracies. Overall, this study constitutes a guideline for an adept use of current Mg2+ models and provides novel insights for the rational development of next-generation Mg2+ FFs to be employed for atomistic simulations of RNA.
Collapse
Affiliation(s)
- Lorenzo Casalino
- International School for Advanced Studies (SISSA) , Trieste, Italy
| | - Giulia Palermo
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Nodira Abdurakhmonova
- International School for Advanced Studies (SISSA) , Trieste, Italy.,Università degli Studi di Trieste , Trieste, Italy
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center c/o SISSA , via Bonomea 265, Trieste, Italy
| |
Collapse
|
12
|
Simonson T, Roux B. Concepts and protocols for electrostatic free energies. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2015.1121544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|