1
|
Zhao Y, Shao Y, Chen H, Luo X, Liu X. The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091505. [PMID: 37177049 PMCID: PMC10179783 DOI: 10.3390/nano13091505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Herein, well-defined hollow CuS microspheres assembled from nanosheets were successfully synthesized through a facile solvothermal method. Hollow CuS microspheres have an average diameter of 1.5 μm; moreover, the primary CuS nanosheets have an ultrathin thickness of about 10 nm and are bound by {0001} polar facets. When used as anodes for lithium-ion batteries (LIBs), hollow CuS microspheres exhibit excellent electrochemical properties, including a large discharge capacity (610.1 mAh g-1 at 0.5 C), an excellent rate capability (207.6 and 143.4 mAh g-1 at 1 and 5 C), and a superior cyclic stability (196.3 mAh g-1 at 1 C after 500 cycles). When used as photocatalysts for Rhodamine B (RhB), hollow CuS microspheres can degrade more than 99% of the initial RhB within 21 min. These excellent Li-ion storage properties and photocatalytical performances are attributed to their unique hierarchical hollow structure.
Collapse
Affiliation(s)
- Yiyang Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yonghui Shao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Hao Chen
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xinwen Luo
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xiaodi Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
2
|
Tanaka T, Kurihara M, Kuwahara M, Kuwahara S. Copper sulfide nanoribbon growth triggered by carbon nanotube aggregation via dialysis. RSC Adv 2022; 12:31363-31368. [PMID: 36349000 PMCID: PMC9627581 DOI: 10.1039/d2ra04832a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/27/2022] [Indexed: 01/25/2023] Open
Abstract
The growth of copper sulfide (Cu x S) nanoribbons, a class of Cu x S nanomaterials, was achieved by the aggregation of single-walled carbon nanotubes (SWCNTs) via a dialysis process. The obtained nanoribbon structure and its constituent elements on a film of SWCNT aggregates were confirmed by transmission electron microscopy (TEM) and scanning transmittance electron microscopy-energy dispersive X-ray spectroscopy. The subsequently obtained TEM images and Raman spectra revealed that nucleus synthesis and subsequent growth of Cu x S nanoribbons occurred during the aggregation of SWCNTs. The growth procedure described in this work provides an approach for the wet chemical synthesis of metal sulfide nanomaterials.
Collapse
Affiliation(s)
- Tomomi Tanaka
- Department of Chemistry, Faculty of Science, Toho University2-2-1 MiyamaFunabashi274-8510ChibaJapan
| | - Misaki Kurihara
- Department of Chemistry, Faculty of Science, Toho University2-2-1 MiyamaFunabashi274-8510ChibaJapan
| | - Makoto Kuwahara
- Graduate School of Engineering and Institute of Materials and Systems for Sustainability, Nagoya UniversityChikusaNagoya 464-8603Japan
| | - Shota Kuwahara
- Department of Chemistry, Faculty of Science, Toho University2-2-1 MiyamaFunabashi274-8510ChibaJapan
| |
Collapse
|
3
|
Luo X, Hu H, Pan Z, Pei F, Qian H, Miao K, Guo S, Wang W, Feng G. Efficient and stable catalysis of hollow Cu 9S 5 nanospheres in the Fenton-like degradation of organic dyes. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122735. [PMID: 32339878 DOI: 10.1016/j.jhazmat.2020.122735] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
The development of new heterogeneous catalysts with stable catalytic activity in a wide pH range to prevent polluting precipitation plays a vital role in large-scale wastewater treatment. Here, a facile anion exchange strategy was designed to fabricate hollow Cu9S5 nanospheres by using Cu2O nanospheres as hard-templates. The structural and compositional transformation from Cu2O nanospheres to hollow Cu9S5 nanospheres were investigated via X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The Fenton-like degradation of organic dyes was used to evaluate the catalytic performance of the obtained Cu-containing catalysts. Results reveal that the hollow Cu9S5 nanospheres have the best catalytic activity among five kinds of Cu-containing catalysts. Hollow Cu9S5 nanospheres can effectively accelerate the decomposition of H2O2 into hydroxyl radicals and superoxide radical, which have been proven to be mainly oxidative species in the Fenton-like degradation of organic pollutants. Hollow Cu9S5 nanospheres have a wide pH application range of 5.0-9.0, and their extremely stable activity can be maintained in at least 15 catalytic cycles with a Cu2+ ion leaching rate of less than 1.0 %. The outstanding catalytic performance of the Cu9S5 catalyst is expected to enhance the practical applications of copper sulfide catalysts in Fenton-like wastewater treatment.
Collapse
Affiliation(s)
- Xiaolin Luo
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, PR China.
| | - Huanting Hu
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, PR China
| | - Zhe Pan
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, PR China
| | - Fei Pei
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, PR China
| | - Huaming Qian
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, PR China
| | - Kangkang Miao
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, PR China
| | - Sifan Guo
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, PR China
| | - Wei Wang
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, PR China
| | - Guodong Feng
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, PR China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China; Department of Chemistry, University of Tennessee Knoxville, TN 37996, USA.
| |
Collapse
|
4
|
Gu Y, Li T, Guo B, Jiang Y, Wen W, Wu J, Zhao L. Copper sulfide nanostructures and their sodium storage properties. CrystEngComm 2020. [DOI: 10.1039/d0ce01059f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hexagonal CuS nanosheets and microspheres composed of numerous flakes were successfully prepared by sonochemical and solvothermal methods, respectively.
Collapse
Affiliation(s)
- Yarong Gu
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Tingting Li
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Bingkun Guo
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Yutao Jiang
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Weijia Wen
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Jinbo Wu
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Lijuan Zhao
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
5
|
Wang P, Shen M, Zhou H, Meng C, Yuan A. MOF-Derived CuS@Cu-BTC Composites as High-Performance Anodes for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903522. [PMID: 31608560 DOI: 10.1002/smll.201903522] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The CuS(x wt%)@Cu-BTC (BTC = 1,3,5-benzenetricarboxylate; x = 3, 10, 33, 58, 70, 99.9) materials are synthesized by a facile sulfidation reaction. The composites are composed of octahedral Cu3 (BTC)2 ·(H2 O)3 (Cu-BTC) with a large specific surface area and CuS with a high conductivity. The as-prepared CuS@Cu-BTC products are first applied as the anodes of lithium-ion batteries (LIBs). The synergistic effect between Cu-BTC and CuS components can not only accommodate the volume change and stress relaxation of electrodes but also facilitate the fast transport of Li ions. Thus, it can greatly suppress the transformation process from Li2 S to polysulfides by improving the reversibility of the conversion reaction. Benefiting from the unique structural features, the optimal CuS(70 wt%)@Cu-BTC sample exhibits a remarkably improved electrochemical performance, showing an over-theoretical capacity up to 1609 mAh g-1 after 200 cycles (100 mA g-1 ) with an excellent rate-capability of ≈490 mAh g-1 at 1000 mA g-1 . The outstanding LIB properties indicate that the CuS(70 wt%)@Cu-BTC sample is a highly desirable electrode material candidate for high-performance LIBs.
Collapse
Affiliation(s)
- Ping Wang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Mengqi Shen
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Hu Zhou
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Chunfeng Meng
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
- Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| |
Collapse
|
6
|
Chen X, Yang J, Wu T, Li L, Luo W, Jiang W, Wang L. Nanostructured binary copper chalcogenides: synthesis strategies and common applications. NANOSCALE 2018; 10:15130-15163. [PMID: 30063055 DOI: 10.1039/c8nr05558k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanostructured binary copper chalcogenides (NBCCs) have been the subject of extensive research as promising candidates in energy-related and biological applications due to their advantageous properties, environmental compatibility, and abundance. The remarkable properties of these materials is born out of the variable stoichiometry between the copper and chalcogens, as well as the structural versatility, with zero-dimension to three-dimension structures, which consequently improves their electrical, optical, and catalytic properties. Here, the research history and development process of the binary copper chalcogenides are introduced. Typical synthesis strategies for NBCCs vary according to structure dimensionality and specific energy-related and biological applications dependent on the structure and stoichiometry are summarized. The future development of designed nanostructures and tuned stoichiometry in NBCCs for further high-performance applications are outlined.
Collapse
Affiliation(s)
- Xinqi Chen
- Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Chemical Dealloying Synthesis of CuS Nanowire-on-Nanoplate Network as Anode Materials for Li-Ion Batteries. METALS 2018. [DOI: 10.3390/met8040252] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Modarres M, Lim JHW, George C, De Volder M. Evolution of Reduced Graphene Oxide-SnS 2 Hybrid Nanoparticle Electrodes in Li-Ion Batteries. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:13018-13024. [PMID: 28804530 PMCID: PMC5547442 DOI: 10.1021/acs.jpcc.7b02878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/26/2017] [Indexed: 06/07/2023]
Abstract
Hybrid nanomaterials where active battery nanoparticles are synthesized directly onto conductive additives such as graphene hold the promise of improving the cyclability and energy density of conversion and alloying type Li-ion battery electrodes. Here we investigate the evolution of hybrid reduced graphene oxide-tin sulfide (rGO-SnS2) electrodes during battery cycling. These hybrid nanoparticles are synthesized by a one-step solvothermal microwave reaction which allows for simultaneous synthesis of the SnS2 nanocrystals and reduction of GO. Despite the hybrid architecture of these electrodes, electrochemical impedance spectroscopy shows that the impedance doubles in about 25 cycles and subsequently gradually increases, which may be caused by an irreversible surface passivation of rGO by sulfur enriched conversion products. This surface passivation is further confirmed by post-mortem Raman spectroscopy of the electrodes, which no longer detects rGO peaks after 100 cycles. Moreover, galvanostatic intermittent titration analysis during the 1st and 100th cycles shows a drop in Li-ion diffusion coefficient of over an order of magnitude. Despite reports of excellent cycling performance of hybrid nanomaterials, our work indicates that in certain electrode systems, it is still critical to further address passivation and charge transport issues between the active phase and the conductive additive in order to retain high energy density and cycling performance.
Collapse
Affiliation(s)
- Mohammad
H. Modarres
- Department
of Engineering, Institute for Manufacturing, 17 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Jonathan Hua-Wei Lim
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Chandramohan George
- Department
of Engineering, Institute for Manufacturing, 17 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Michael De Volder
- Department
of Engineering, Institute for Manufacturing, 17 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
9
|
Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound Copper Chalcogenide Nanocrystals. Chem Rev 2017; 117:5865-6109. [PMID: 28394585 DOI: 10.1021/acs.chemrev.6b00376] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), energy storage (lithium-ion batteries, hydrogen generation), emissive materials (plasmonics, LEDs, biolabelling), sensors (electrochemical, biochemical), biomedical devices (magnetic resonance imaging, X-ray computer tomography), and medical therapies (photochemothermal therapies, immunotherapy, radiotherapy, and drug delivery). The confluence of advances in the synthesis, assembly, and application of these NCs in the past decade has the potential to significantly impact society, both economically and environmentally.
Collapse
Affiliation(s)
- Claudia Coughlan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| | - Maria Ibáñez
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain
| | - Oleksandr Dobrozhan
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,Department of Electronics and Computing, Sumy State University , 2 Rymskogo-Korsakova st., 40007 Sumy, Ukraine
| | - Ajay Singh
- Materials Physics & Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
10
|
Morales-García Á, He J, Soares AL, Duarte HA. Surfaces and morphologies of covellite (CuS) nanoparticles by means of ab initio atomistic thermodynamics. CrystEngComm 2017. [DOI: 10.1039/c7ce00203c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Hosseinpour Z, Hosseinpour S, Maaza M, Scarpellini A. Co2+ and Ho3+ doped CuS nanocrystals with improved photocatalytic activity under visible light irradiation. RSC Adv 2016. [DOI: 10.1039/c6ra03647c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Co2+ and Ho3+ doped CuS nanostructures have been synthesized by a hydrothermal method. The nature of dopants influence the morphology, photocatalytic performance and the band gap values.
Collapse
Affiliation(s)
- Zahra Hosseinpour
- Department of Inorganic Chemistry
- Faculty of Chemistry
- University of Tabriz
- 51666-14766 Tabriz
- Iran
| | - Sara Hosseinpour
- Department of Inorganic Chemistry
- Faculty of Chemistry
- University of Tabriz
- 51666-14766 Tabriz
- Iran
| | - Malik Maaza
- UNISA Africa Chair in Nanosciences-Nanotechnology
- College of Graduate Studies
- University of South Africa
- Pretoria
- South Africa
| | - Alice Scarpellini
- Department of Nanochemistry
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
| |
Collapse
|