1
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Cordova DLM, Zhou Y, Milligan GM, Cheng L, Kerr T, Ziller J, Wu R, Arguilla MQ. Sensitive Thermochromic Behavior of InSeI, a Highly Anisotropic and Tubular 1D van der Waals Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312597. [PMID: 38301612 DOI: 10.1002/adma.202312597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Thermochromism, the change in color of a material with temperature, is the fundamental basis of optical thermometry. A longstanding challenge in realizing sensitive optical thermometers for widespread use is identifying materials with pronounced thermometric optical performance in the visible range. Herein, it is demonstrated that single crystals of indium selenium iodide (InSeI), a 1D van der Waals (vdW) solid consisting of weakly bound helical chains, exhibit considerable visible range thermochromism. A strong temperature-dependent optical band edge absorption shift ranging from 450 to 530 nm (2.8 to 2.3 eV) over a 380 K temperature range with an experimental (dEg/dT)max value extracted to be 1.26 × 10-3 eV K-1 is shown. This value lies appreciably above most dense conventional semiconductors in the visible range and is comparable to soft lattice solids. The authors further seek to understand the origin of this unusually sensitive thermochromic behavior and find that it arises from strong electron-phonon interactions and anharmonic phonons that significantly broaden band edges and lower the Eg with increasing temperature. The identification of structural signatures resulting in sensitive thermochromism in 1D vdW crystals opens avenues in discovering low-dimensional solids with strong temperature-dependent optical responses across broad spectral windows, dimensionalities, and size regimes.
Collapse
Affiliation(s)
| | - Yinong Zhou
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Griffin M Milligan
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Leo Cheng
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Tyler Kerr
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Joseph Ziller
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Maxx Q Arguilla
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
3
|
Cai M, Sun A, Yan A, Ding Z, Jiang MZ, Wang C, Yuan B. A cost-effective approach to measurements of fluorophore temperature sensitivity and temperature change with reasonable accuracy. Sci Rep 2024; 14:6823. [PMID: 38514729 PMCID: PMC10957993 DOI: 10.1038/s41598-024-57387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
The demand for measuring fluorophore temperature sensitivity and temperature change in chemical or biological samples has spurred the search for effective methods. While infrared (IR) light-based thermal devices are popular, they are limited to surface temperature measurement. Fluorescence-based thermometry, which utilizes intensity, lifetime, polarization, and spectrum change, provides the temperature information directly from the samples and can have high temporal and spatial resolution. However, measuring fluorescence can be tricky and expensive. A cost-effective approach to achieving reasonable accuracy is highly desired. This study introduces such an approach, employing a light-emitting diode (LED) for fluorophore excitation and a laser diode (LD) for sample heating, with a phone camera recording fluorescence changes. A data processing method converts the video into digital data, processed through digital filters. Utilizing a small-volume cuvette enhances heating efficiency. This study serves as a practical guide for inexperienced individuals, including students, instructors, and researchers, facilitating entry into the field and navigating the complexities of fluorescence-based thermometry.
Collapse
Affiliation(s)
| | | | - Andrea Yan
- SRCP, RCLabX LLC, Southlake, TX, 76092, USA
| | | | | | | | | |
Collapse
|
4
|
Brites CDS, Marin R, Suta M, Carneiro Neto AN, Ximendes E, Jaque D, Carlos LD. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302749. [PMID: 37480170 DOI: 10.1002/adma.202302749] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Indexed: 07/23/2023]
Abstract
Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology.
Collapse
Affiliation(s)
- Carlos D S Brites
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Riccardo Marin
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Albano N Carneiro Neto
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Erving Ximendes
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Daniel Jaque
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Luís D Carlos
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
5
|
Blasi D, Gonzalez-Pato N, Rodriguez Rodriguez X, Diez-Zabala I, Srinivasan SY, Camarero N, Esquivias O, Roldán M, Guasch J, Laromaine A, Gorostiza P, Veciana J, Ratera I. Ratiometric Nanothermometer Based on a Radical Excimer for In Vivo Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207806. [PMID: 37060223 DOI: 10.1002/smll.202207806] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Ratiometric fluorescent nanothermometers with near-infrared emission play an important role in in vivo sensing since they can be used as intracellular thermal sensing probes with high spatial resolution and high sensitivity, to investigate cellular functions of interest in diagnosis and therapy, where current approaches are not effective. Herein, the temperature-dependent fluorescence of organic nanoparticles is designed, synthesized, and studied based on the dual emission, generated by monomer and excimer species, of the tris(2,4,6-trichlorophenyl)methyl radical (TTM) doping organic nanoparticles (TTMd-ONPs), made of optically neutral tris(2,4,6-trichlorophenyl)methane (TTM-αH), acting as a matrix. The excimer emission intensity of TTMd-ONPs decreases with increasing temperatures whereas the monomer emission is almost independent and can be used as an internal reference. TTMd-ONPs show a great temperature sensitivity (3.4% K-1 at 328 K) and a wide temperature response at ambient conditions with excellent reversibility and high colloidal stability. In addition, TTMd-ONPs are not cytotoxic and their ratiometric outputs are unaffected by changes in the environment. Individual TTMd-ONPs are able to sense temperature changes at the nano-microscale. In vivo thermometry experiments in Caenorhabditis elegans (C. elegans) worms show that TTMd-ONPs can locally monitor internal body temperature changes with spatio-temporal resolution and high sensitivity, offering multiple applications in the biological nanothermometry field.
Collapse
Affiliation(s)
- Davide Blasi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, 08193, Spain
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Nerea Gonzalez-Pato
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, 08193, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB, Bellaterra, 08193, Spain
| | - Xavier Rodriguez Rodriguez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, 08193, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB, Bellaterra, 08193, Spain
| | - Iñigo Diez-Zabala
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, 08193, Spain
| | | | - Núria Camarero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Clúster, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Oriol Esquivias
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, 08193, Spain
| | - Mònica Roldán
- Unitat de Microscòpia Confocal i Imatge Cellular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malaties Rares (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
| | - Judith Guasch
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, 08193, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB, Bellaterra, 08193, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, 08193, Spain
| | - Pau Gorostiza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB, Bellaterra, 08193, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Clúster, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, 08193, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB, Bellaterra, 08193, Spain
| | - Imma Ratera
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, 08193, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus UAB, Bellaterra, 08193, Spain
| |
Collapse
|
6
|
Garci A, David AHG, Le Bras L, Ovalle M, Abid S, Young RM, Liu W, Azad CS, Brown PJ, Wasielewski MR, Stoddart JF. Thermally Controlled Exciplex Fluorescence in a Dynamic Homo[2]catenane. J Am Chem Soc 2022; 144:23551-23559. [PMID: 36512436 DOI: 10.1021/jacs.2c10591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Motion-induced change in emission (MICE) is a phenomenon that can be employed to develop various types of probes, including temperature and viscosity sensors. Although MICE, arising from the conformational motion in particular compounds, has been studied extensively, this phenomenon has not been investigated in depth in mechanically interlocked molecules (MIMs) undergoing coconformational changes. Herein, we report the investigation of a thermoresponsive dynamic homo[2]catenane incorporating pyrene units and displaying relative circumrotational motions of its cyclophanes as evidenced by variable-temperature 1H NMR spectroscopy and supported by its visualization through molecular dynamics simulations and quantum mechanics calculations. The relative coconformational motions induce a significant change in the fluorescence emission of the homo[2]catenane upon changes in temperature compared with its component cyclophanes. This variation in the exciplex emission of the homo[2]catenane is reversible as demonstrated by four complete cooling and heating cycles. This research opens up possibilities of using the coconformational changes in MIMs-based chromophores for probing fluctuations in temperature which could lead to applications in biomedicine or materials science.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Laura Le Bras
- Laboratoire Chrono-environnement (UMR 6249), Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon, France
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seifallah Abid
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wenqi Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paige J Brown
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
7
|
Hu Q, Kong N, Chai Y, Xing Z, Wu Y, Zhang J, Li F, Zhu X. A lanthanide nanocomposite with cross-relaxation enhanced near-infrared emissions as a ratiometric nanothermometer. NANOSCALE HORIZONS 2022; 7:1177-1185. [PMID: 35968804 DOI: 10.1039/d2nh00283c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lanthanide luminescence nanothermometers (LNTs) provide microscopic, highly sensitive, and visualizable optical signals for reporting temperature information, which is particularly useful in biomedicine to achieve precise diagnosis and therapy. However, LNTs with efficient emissions at the long-wavelength region of the second and the third near-infrared (NIR-II/III) biological window, which is more favourable for in vivo thermometry, are still limited. Herein, we present a lanthanide-doped nanocomposite with Tm3+ and Nd3+ ions as emitters working beyond 1200 nm to construct a dual ratiometric LNT. The cross-relaxation processes among lanthanide ions are employed to establish a strategy to enhance the NIR emissions of Tm3+ for bioimaging-based temperature detection in vivo. The dual ratiometric probes included in the nanocomposite have potential in monitoring the temperature difference and heat transfer at the nanoscale, which would be useful in modulating the heating operation more precisely during thermal therapy and other biomedical applications. This work not only provides a powerful tool for temperature sensing in vivo but also proposes a method to build high-efficiency NIR-II/III lanthanide luminescent nanomaterials for broader bio-applications.
Collapse
Affiliation(s)
- Qian Hu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Yingjie Chai
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China.
| | - Zhenyu Xing
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Yukai Wu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Jieying Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China.
| | - Xingjun Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China.
| |
Collapse
|
8
|
Zheng Y, Meana Y, Mazza MMA, Baker JD, Minnett PJ, Raymo FM. Fluorescence Switching for Temperature Sensing in Water. J Am Chem Soc 2022; 144:4759-4763. [PMID: 35262338 DOI: 10.1021/jacs.2c00820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A water-soluble thermochromic molecular switch with spectrally resolved fluorescence in its two interconvertible states can be assembled in three synthetic steps by integrating a fluorescent coumarin chromophore, a hydrophilic oligo(ethylene glycol) chain, and a switchable oxazole heterocycle in the same covalent skeleton. Measurements of its two emissions in separate detection channels of a fluorescence microscope permit the noninvasive and ratiometric sensing of temperature at the micrometer level with millisecond response in aqueous solutions and within hydrogel matrices. The ratiometric optical output of this fluorescent molecular switch overcomes the limitations of single-wavelength fluorescent probes and enables noninvasive temperature mapping at length scales that are not accessible to conventional thermometers based on physical contact.
Collapse
Affiliation(s)
- Yeting Zheng
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Yasniel Meana
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Mercedes M A Mazza
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - James D Baker
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| | - Peter J Minnett
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149-1031, United States
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
9
|
Zhang H, Wu Y, Tang P, Zhu H, Gan Z, Zhang HQ, Wu D. Accurate and Real-Time Detection Method for the Exothermic Behavior of Enzymatic Nano-Microregions Using Temperature-Sensitive Amino-AgInS 2 Quantum Dots. SMALL METHODS 2022; 6:e2100811. [PMID: 35041293 DOI: 10.1002/smtd.202100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/17/2021] [Indexed: 06/14/2023]
Abstract
The thermal behavior of enzymes in nanoscale is of great significance to life phenomena. This nonequilibrium state real-time thermal behavior of enzymes at nanoscale cannot be accurately detected by existing methods. Herein, a novel method is developed for the detection of this thermal behavior. The enzyme-quantum dot (QD) conjugates can be obtained by chemically grafting temperature-sensitive amino-AgInS2 QDs to the enzyme, where the QDs act as nanothermometers with a sensitivity of -2.82% °C-1 . Detecting the photoluminescence intensity changes of the enzyme-QD conjugates, the real-time thermal behavior of enzymes can be obtained. The enzyme-QD conjugates show a temperature difference as high as 6 °C above ambient temperature in nano-microregions with good reproducibility (maximum error of 4%) during catalysis, while solution temperature hardly changed. This method has a temperature resolution of ≈0.5 °C with a detection limit of 0.02 mg mL-1 of enzyme, and spatially ensured that the amino-AgInS2 QDs are quantitatively bound to the enzyme; thus, it can accurately detect the exothermic behavior of the enzyme and can be extended to other organisms' detection. This method has high sensitivity, good stability, and reliability, indicating its great potential application in investigating the thermal behavior of organisms in nanoscale and related life phenomena.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Youshen Wu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng Tang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongrui Zhu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhenhai Gan
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hu-Qin Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
10
|
Zairov RR, Dovzhenko AP, Sarkanich KA, Nizameev IR, Luzhetskiy AV, Sudakova SN, Podyachev SN, Burilov VA, Vatsouro IM, Vomiero A, Mustafina AR. Single Excited Dual Band Luminescent Hybrid Carbon Dots-Terbium Chelate Nanothermometer. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3080. [PMID: 34835844 PMCID: PMC8618998 DOI: 10.3390/nano11113080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022]
Abstract
The report introduces hybrid polyelectrolyte-stabilized colloids combining blue and green-emitting building blocks, which are citrate carbon dots (CDs) and [TbL]+ chelate complexes with 1,3-diketonate derivatives of calix[4]arene. The joint incorporation of green and blue-emitting blocks into the polysodium polystyrenesulfonate (PSS) aggregates is carried out through the solvent-exchange synthetic technique. The coordinative binding between Tb3+ centers and CD surface groups in initial DMF solutions both facilitates joint incorporation of [TbL]+ complexes and the CDs into the PSS-based nanobeads and affects fluorescence properties of [TbL]+ complexes and CDs, as well as their ability for temperature sensing. The variation of the synthetic conditions is represented herein as a tool for tuning the fluorescent response of the blue and green-emitting blocks upon heating and cooling. The revealed regularities enable developing either dual-band luminescent colloids for monitoring temperature changes within 25-50 °C through double color emission or transforming the colloids into ratiometric temperature sensors via simple concentration variation of [TbL]+ and CDs in the initial DMF solution. Novel hybrid carbon dots-terbium chelate PSS-based nanoplatform opens an avenue for a new generation of sensitive and customizable single excited dual-band nanothermometers.
Collapse
Affiliation(s)
- Rustem R. Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (S.N.S.); (S.N.P.); (A.R.M.)
| | - Alexey P. Dovzhenko
- Department of Physical Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia; (A.P.D.); (K.A.S.); (V.A.B.)
| | - Kirill A. Sarkanich
- Department of Physical Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia; (A.P.D.); (K.A.S.); (V.A.B.)
| | - Irek R. Nizameev
- Department of Nanotechnologies in Electronics, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10, K. Marx Str., 420111 Kazan, Russia;
| | - Andrey V. Luzhetskiy
- Federal State Autonomous Educational Institution of Higher Education “Gubkin Russian State University of Oil and Gas” (National Research University), Leninsky Prospect, 65, 119991 Moscow, Russia;
| | - Svetlana N. Sudakova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (S.N.S.); (S.N.P.); (A.R.M.)
| | - Sergey N. Podyachev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (S.N.S.); (S.N.P.); (A.R.M.)
| | - Vladimir A. Burilov
- Department of Physical Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia; (A.P.D.); (K.A.S.); (V.A.B.)
| | - Ivan M. Vatsouro
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin’s Hills 1, 119991 Moscow, Russia;
| | - Alberto Vomiero
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University Venezia, Via Torino 155, 30172 Venezia-Mestre, Italy;
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Asiya R. Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (S.N.S.); (S.N.P.); (A.R.M.)
| |
Collapse
|
11
|
Kalaparthi V, Peng B, Peerzade SAMA, Palantavida S, Maloy B, Dokukin ME, Sokolov I. Ultrabright fluorescent nanothermometers. NANOSCALE ADVANCES 2021; 3:5090-5101. [PMID: 36132344 PMCID: PMC9418727 DOI: 10.1039/d1na00449b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/15/2021] [Indexed: 06/15/2023]
Abstract
Here we report on the first ultrabright fluorescent nanothermometers, ∼50 nm-size particles, capable of measuring temperature in 3D and down to the nanoscale. The temperature is measured through the recording of the ratio of fluorescence intensities of fluorescent dyes encapsulated inside the nanochannels of the silica matrix of each nanothermometer. The brightness of each particle excited at 488 nm is equivalent to the fluorescence coming from 150 molecules of rhodamine 6G and 1700 molecules of rhodamine B dyes. The fluorescence of both dyes is excited with a single wavelength due to the Förster resonance energy transfer (FRET). We demonstrate repeatable measurements of temperature with the uncertainty down to 0.4 K and a constant sensitivity of ∼1%/K in the range of 20-50 °C, which is of particular interest for biomedical applications. Due to the high fluorescence brightness, we demonstrate the possibility of measurement of accurate 3D temperature distributions in a hydrogel. The accuracy of the measurements is confirmed by numerical simulations. We further demonstrate the use of single nanothermometers to measure temperature. As an example, 5-8 nanothermometers are sufficient to measure temperature with an error of 2 K (with the measurement time of >0.7 s).
Collapse
Affiliation(s)
- V Kalaparthi
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University 200 College Ave. Medford MA 02155 USA
| | - B Peng
- Department of Biomedical Engineering 4 Colby Str. Medford MA 02155 USA
| | - S A M A Peerzade
- Department of Biomedical Engineering 4 Colby Str. Medford MA 02155 USA
| | - S Palantavida
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University 200 College Ave. Medford MA 02155 USA
| | - B Maloy
- Department of Physics, Tufts University 547 Boston Ave. Medford MA 02155 USA
| | - M E Dokukin
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University 200 College Ave. Medford MA 02155 USA
- Sarov Physics and Technology Institute Sarov Russian Federation
- National Research Nuclear University MEPhI Moscow Russian Federation
| | - I Sokolov
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University 200 College Ave. Medford MA 02155 USA
- Department of Biomedical Engineering 4 Colby Str. Medford MA 02155 USA
- Department of Physics, Tufts University 547 Boston Ave. Medford MA 02155 USA
| |
Collapse
|
12
|
Zani V, Pedron D, Pilot R, Signorini R. Contactless Temperature Sensing at the Microscale Based on Titanium Dioxide Raman Thermometry. BIOSENSORS-BASEL 2021; 11:bios11040102. [PMID: 33918227 PMCID: PMC8066910 DOI: 10.3390/bios11040102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/01/2023]
Abstract
The determination of local temperature at the nanoscale is a key point to govern physical, chemical and biological processes, strongly influenced by temperature. Since a wide range of applications, from nanomedicine to nano- or micro-electronics, requires a precise determination of the local temperature, significant efforts have to be devoted to nanothermometry. The identification of efficient materials and the implementation of detection techniques are still a hot topic in nanothermometry. Many strategies have been already investigated and applied to real cases, but there is an urgent need to develop new protocols allowing for accurate and sensitive temperature determination. The focus of this work is the investigation of efficient optical thermometers, with potential applications in the biological field. Among the different optical techniques, Raman spectroscopy is currently emerging as a very interesting tool. Its main advantages rely on the possibility of carrying out non-destructive and non-contact measurements with high spatial resolution, reaching even the nanoscale. Temperature variations can be determined by following the changes in intensity, frequency position and width of one or more bands. Concerning the materials, Titanium dioxide has been chosen as Raman active material because of its intense cross-section and its biocompatibility, as already demonstrated in literature. Raman measurements have been performed on commercial anatase powder, with a crystallite dimension of hundreds of nm, using 488.0, 514.5, 568.2 and 647.1 nm excitation lines of the CW Ar+/Kr+ ion laser. The laser beam was focalized through a microscope on the sample, kept at defined temperature using a temperature controller, and the temperature was varied in the range of 283–323 K. The Stokes and anti-Stokes scattered light was analyzed through a triple monochromator and detected by a liquid nitrogen-cooled CCD camera. Raw data have been analyzed with Matlab, and Raman spectrum parameters—such as area, intensity, frequency position and width of the peak—have been calculated using a Lorentz fitting curve. Results obtained, calculating the anti-Stokes/Stokes area ratio, demonstrate that the Raman modes of anatase, in particular the Eg one at 143 cm−1, are excellent candidates for the local temperature detection in the visible range.
Collapse
Affiliation(s)
- Veronica Zani
- Department of Chemical Science, University of Padua, Via Marzolo 1, I-35131 Padova, Italy; (V.Z.); (D.P.); (R.P.)
- Consorzio INSTM, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Danilo Pedron
- Department of Chemical Science, University of Padua, Via Marzolo 1, I-35131 Padova, Italy; (V.Z.); (D.P.); (R.P.)
- Consorzio INSTM, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Roberto Pilot
- Department of Chemical Science, University of Padua, Via Marzolo 1, I-35131 Padova, Italy; (V.Z.); (D.P.); (R.P.)
- Consorzio INSTM, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Raffaella Signorini
- Department of Chemical Science, University of Padua, Via Marzolo 1, I-35131 Padova, Italy; (V.Z.); (D.P.); (R.P.)
- Consorzio INSTM, Via G. Giusti 9, I-50121 Firenze, Italy
- Correspondence: ; Tel.: +39-049-8275118
| |
Collapse
|
13
|
Nwokolo OA, Kidd B, Allen T, Minasyan AS, Vardelly S, Johnson KD, Nesterova IV. Rational Design of Memory‐Based Sensors: the Case of Molecular Calorimeters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Obianuju A. Nwokolo
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Brant Kidd
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Te'Kara Allen
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Alexander S. Minasyan
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Suchitra Vardelly
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Kristopher D. Johnson
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Irina V. Nesterova
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| |
Collapse
|
14
|
Yu SS, Zhao HR, Zhang H, Duan HB. Two chiral haloplumbate hybrids with thermochromism luminescence and application potential as luminescent thermometers. Dalton Trans 2020; 49:16643-16648. [PMID: 33170201 DOI: 10.1039/d0dt02261f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two noncentrosymmetric haloplumbate hybrids, [C6H10(NH3)2][PbCl4] (1) and [C6H10(NH3)2][PbBr4] (2), have been synthesized. Crystals of 1 and 2 belong to the chiral space group P212121. The inorganic parts comprise a one-dimensional chain structure for 1 and a two-dimensional sheet structure for 2. Both compounds exhibit thermochromic luminescence originating from dual emission and have potential applications as self-referencing luminescent thermometers.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Key laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China.
| | | | | | | |
Collapse
|
15
|
Hoang S, Olivier S, Cuenot S, Montillet A, Bellettre J, Ishow E. Microfluidic Assisted Flash Precipitation of Photocrosslinkable Fluorescent Organic Nanoparticles for Fine Size Tuning and Enhanced Photoinduced Processes. Chemphyschem 2020; 21:2502-2515. [PMID: 33073929 DOI: 10.1002/cphc.202000633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/27/2020] [Indexed: 01/05/2023]
Abstract
Highly concentrated dispersions of fluorescent organic nanoparticles (FONs), broadly used for optical tracking, bioimaging and drug delivery monitoring, are obtained using a newly designed micromixer chamber involving high impacting flows. Fine size tuning and narrow size distributions are easily obtained by varying independently the flow rates of the injected fluids and the concentration of the dye stock solution. The flash nanoprecipitation process employed herein is successfully applied to the fabrication of bicomposite FONs designed to allow energy transfer. Considerable enhancement of the emission signal of the energy acceptors is promoted and its origin is found to result from polarity rather than steric effects. Finally, we exploit the high spatial confinement encountered in FONs and their ability to encapsulate hydrophobic photosensitizers to induce photocrosslinking. An increase in the photocrosslinked FON stiffness is evidenced by measuring the elastic modulus at the nanoscale using atomic force microscopy. These results pave the way toward the straightforward fabrication of multifunctional and mechanically photoswitchable FONs, opening novel opportunities in sensing, multimodal imaging, and theranostics.
Collapse
Affiliation(s)
- Stéphane Hoang
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Simon Olivier
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France.,Current address: Air Liquide, Air Liquide Facility, 28 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Stéphane Cuenot
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000, Nantes, France
| | - Agnès Montillet
- GEPEA UMR CNRS 6144, IUT Saint Nazaire, Université de Nantes, 58 rue Michel Ange, 44600, Saint Nazaire, France
| | - Jérôme Bellettre
- LTeN UMR CNRS 6607, Polytech Nantes, Université de Nantes, rue Christian Pauc, 44306, Nantes, France
| | - Eléna Ishow
- CEISAM-UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| |
Collapse
|
16
|
Nwokolo OA, Kidd B, Allen T, Minasyan AS, Vardelly S, Johnson KD, Nesterova IV. Rational Design of Memory-Based Sensors: the Case of Molecular Calorimeters. Angew Chem Int Ed Engl 2020; 60:1610-1614. [PMID: 32996657 DOI: 10.1002/anie.202011422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Thermodynamic characterization is crucial for understanding molecular interactions. However, methodologies for measuring heat changes in small open systems are extremely limited. We document a new approach for designing molecular sensors, that function as calorimeters: sensors based on memory. To design a memory-based sensor, we take advantage of the unique kinetic properties of nucleic acid scaffolds. Particularly, we elaborate on the differences in folding and unfolding rates in nucleic acid quadruplexes. DNA-based i-motifs unfold fast in response to small heats but do not fold back when the system is equilibrated with surroundings. We translated this behavior into a molecular memory function that enables the measurement of heat changes in open environments. The new sensors are biocompatible, operate homogeneously, and measure small heats released over long time periods. As a proof-of-concept, we demonstrate how the molecular calorimeters report heat changes generated in water/propanol mixing and in ligand/protein binding.
Collapse
Affiliation(s)
- Obianuju A Nwokolo
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Brant Kidd
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Te'Kara Allen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Suchitra Vardelly
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Kristopher D Johnson
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| |
Collapse
|
17
|
Pominova D, Proydakova V, Romanishkin I, Ryabova A, Kuznetsov S, Uvarov O, Fedorov P, Loschenov V. Temperature Sensing in the Short-Wave Infrared Spectral Region Using Core-Shell NaGdF 4:Yb 3+, Ho 3+, Er 3+@NaYF 4 Nanothermometers. NANOMATERIALS 2020; 10:nano10101992. [PMID: 33050341 PMCID: PMC7601673 DOI: 10.3390/nano10101992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
The short-wave infrared region (SWIR) is promising for deep-tissue visualization and temperature sensing due to higher penetration depth and reduced scattering of radiation. However, the strong quenching of luminescence in biological media and low thermal sensitivity of nanothermometers in this region are major drawbacks that limit their practical application. Nanoparticles doped with rare-earth ions are widely used as thermal sensors operating in the SWIR region through the luminescence intensity ratio (LIR) approach. In this study, the effect of the shell on the sensitivity of temperature determination using NaGdF4 nanoparticles doped with rare-earth ions (REI) Yb3+, Ho3+, and Er3+ coated with an inert NaYF4 shell was investigated. We found that coating the nanoparticles with a shell significantly increases the intensity of luminescence in the SWIR range, prevents water from quenching luminescence, and decreases the temperature of laser-induced heating. Thermometry in the SWIR spectral region was demonstrated using synthesized nanoparticles in dry powder and in water. The core-shell nanoparticles obtained had intense luminescence and made it possible to determine temperatures in the range of 20–40 °C. The relative thermal sensitivity of core-shell NPs was 0.68% °C−1 in water and 4.2% °C−1 in dry powder.
Collapse
|
18
|
Zhou J, Del Rosal B, Jaque D, Uchiyama S, Jin D. Advances and challenges for fluorescence nanothermometry. Nat Methods 2020; 17:967-980. [PMID: 32989319 DOI: 10.1038/s41592-020-0957-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Fluorescent nanothermometers can probe changes in local temperature in living cells and in vivo and reveal fundamental insights into biological properties. This field has attracted global efforts in developing both temperature-responsive materials and detection procedures to achieve sub-degree temperature resolution in biosystems. Recent generations of nanothermometers show superior performance to earlier ones and also offer multifunctionality, enabling state-of-the-art functional imaging with improved spatial, temporal and temperature resolutions for monitoring the metabolism of intracellular organelles and internal organs. Although progress in this field has been rapid, it has not been without controversy, as recent studies have shown possible biased sensing during fluorescence-based detection. Here, we introduce the design principles and advances in fluorescence nanothermometry, highlight application achievements, discuss scenarios that may lead to biased sensing, analyze the challenges ahead in terms of both fundamental issues and practical implementations, and point to new directions for improving this interdisciplinary field.
Collapse
Affiliation(s)
- Jiajia Zhou
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia.
| | - Blanca Del Rosal
- ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Australia
| | - Daniel Jaque
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, Spain. .,Fluorescence Imaging Group, Departamento de Física de Materiales-Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia.,Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong, China
| |
Collapse
|
19
|
Mohammed LJ, Omer KM. Carbon Dots as New Generation Materials for Nanothermometer: Review. NANOSCALE RESEARCH LETTERS 2020; 15:182. [PMID: 32960340 PMCID: PMC7509034 DOI: 10.1186/s11671-020-03413-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 05/21/2023]
Abstract
Highly sensitive non-contact mode temperature sensing is substantial for studying fundamental chemical reactions, biological processes, and applications in medical diagnostics. Nanoscale-based thermometers are guaranteeing non-invasive probes for sensitive and precise temperature sensing with subcellular resolution. Fluorescence-based temperature sensors have shown great capacity since they operate as "non-contact" mode and offer the dual functions of cellular imaging and sensing the temperature at the molecular level. Advancements in nanomaterials and nanotechnology have led to the development of novel sensors, such as nanothermometers (novel temperature-sensing materials with a high spatial resolution at the nanoscale). Such nanothermometers have been developed using different platforms such as fluorescent proteins, organic compounds, metal nanoparticles, rare-earth-doped nanoparticles, and semiconductor quantum dots. Carbon dots (CDs) have attracted interest in many research fields because of outstanding properties such as strong fluorescence, photobleaching resistance, chemical stability, low-cost precursors, low toxicity, and biocompatibility. Recent reports showed the thermal-sensing behavior of some CDs that make them an alternative to other nanomaterials-based thermometers. This kind of luminescent-based thermometer is promising for nanocavity temperature sensing and thermal mapping to grasp a better understanding of biological processes. With CDs still in its early stages as nanoscale-based material for thermal sensing, in this review, we provide a comprehensive understanding of this novel nanothermometer, methods of functionalization to enhance thermal sensitivity and resolution, and mechanism of the thermal sensing behavior.
Collapse
Affiliation(s)
- Lazo Jazaa Mohammed
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, Sulaimani City, Kurdistan Region, 46002,, Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, Sulaimani City, Kurdistan Region, 46002,, Iraq.
| |
Collapse
|
20
|
Moros M, Lewinska A, Merola F, Ferraro P, Wnuk M, Tino A, Tortiglione C. Gold Nanorods and Nanoprisms Mediate Different Photothermal Cell Death Mechanisms In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13718-13730. [PMID: 32134240 DOI: 10.1021/acsami.0c02022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photothermal therapy (PTT) is an efficient method of inducing localized hyperthermia and can be achieved using gold nanoparticles as photothermal agents. However, there are many hurdles to get over before this therapy can safely reach the clinics, including nanoparticles' optimal shape and the accurate prediction of cellular responses. Here, we describe the synthesis of gold nanorods and nanoprisms with similar surface plasmon resonances in the near-infrared (NIR) and comparable photothermal conversion efficiencies and characterize the response to NIR irradiation in two biological systems, melanoma cells and the small invertebrate Hydra vulgaris. By integrating animal, cellular, and molecular biology approaches, we show a diverse outcome of nanorods and nanoprisms on the two systems, sustained by the elicitation of different pathways, from necrosis to programmed cell death mechanisms (apoptosis and necroptosis). The comparative multilevel analysis shows great accuracy of in vivo invertebrate models to predict overall responses to photothermal challenging and superior photothermal performance of nanoprisms. Understanding the molecular pathways of these responses may help develop optimized nanoheaters that, safe by design, may improve PTT efficacy for clinical purposes.
Collapse
Affiliation(s)
- Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Anna Lewinska
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Francesco Merola
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Pietro Ferraro
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Maciej Wnuk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
21
|
Kitagawa Y, Kumagai M, Nakanishi T, Fushimi K, Hasegawa Y. The Role of π–f Orbital Interactions in Eu(III) Complexes for an Effective Molecular Luminescent Thermometer. Inorg Chem 2020; 59:5865-5871. [DOI: 10.1021/acs.inorgchem.9b03492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Marina Kumagai
- Graduate School of Chemical Sciences and Engineering, Kita-13 Jo, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Takayuki Nakanishi
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita-21, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
22
|
Rojas-Gutierrez PA, Bekah D, Seuntjens J, DeWolf C, Capobianco JA. Cellular Uptake, Cytotoxicity and Trafficking of Supported Lipid-Bilayer-Coated Lanthanide Upconverting Nanoparticles in Alveolar Lung Cancer Cells. ACS APPLIED BIO MATERIALS 2019; 2:4527-4536. [DOI: 10.1021/acsabm.9b00649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paola A. Rojas-Gutierrez
- Department of Chemistry and Biochemistry, and Center for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Devesh Bekah
- Medical Physics Unit, Cedars Cancer Centre, McGill University Health Centre, 1001 Boulevard Décarie, Montréal, Canada
| | - Jan Seuntjens
- Medical Physics Unit, Cedars Cancer Centre, McGill University Health Centre, 1001 Boulevard Décarie, Montréal, Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry, and Center for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - John A. Capobianco
- Department of Chemistry and Biochemistry, and Center for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
23
|
Spicer G, Efeyan A, Adam A, Thompson S. Universal guidelines for the conversion of proteins and dyes into functional nanothermometers. JOURNAL OF BIOPHOTONICS 2019; 12:e201900044. [PMID: 31034763 PMCID: PMC7238859 DOI: 10.1002/jbio.201900044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/02/2019] [Accepted: 04/26/2019] [Indexed: 05/14/2023]
Abstract
In the last decade, technological advances in chemistry and photonics have enabled real-time measurement of temperature at the nanoscale. Nanothermometers, probes specifically designed to relay these nanoscale temperature changes, provide a high degree of temperature, temporal, and spatial resolution and precision. Several different approaches have been proposed, including microthermocouples, luminescence and fluorescence polarization anisotropy-based nanothermometers. Anisotropy-based nanothermometers excel in terms of biocompatibility because they can be built from endogenous proteins conjugated to dyes, minimizing any system perturbation. Moreover, the resulting fluorescent proteins can retain their native structure and activity while performing the temperature measurement, allowing precise temperature recordings from the native environment or during an enzymatic reaction in any given experimental system. To facilitate the future use of these nanothermometers in research, here we present a theoretical model that predicts the optimal sensitivity for anisotropy-based thermometers starting with any protein or dye, based on protein size and dye fluorescence lifetime. Using this model, most proteins and dyes can be converted to nanothermometers. The utilization of these nanothermometers by a broad spectrum of disciplines within the scientific community will bring new knowledge and understanding that today remains unavailable with current techniques.
Collapse
Affiliation(s)
- Graham Spicer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, USA
| | - Alejo Efeyan
- Metabolism and cell signaling group, Centro Nacional de Investigaciones Oncológicas (CNIO) Madrid 28029, Spain
| | - Alejandro Adam
- Department of Molecular and Cellular Physiology and Department of Ophthalmology, Albany Medical Center, Albany NY 12208, USA
| | - Sebastian Thompson
- Molecular Imaging, Centro Nacional de Investigaciones Oncológicas (CNIO) Madrid 28029, Spain
| |
Collapse
|
24
|
Silva JYR, Proenza YG, da Luz LL, de Sousa Araújo S, Filho MAG, Junior SA, Soares TA, Longo RL. A thermo-responsive adsorbent-heater-thermometer nanomaterial for controlled drug release: (ZIF-8,Eu xTb y)@AuNP core-shell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:578-588. [PMID: 31147030 DOI: 10.1016/j.msec.2019.04.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/30/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022]
Abstract
An adsorbent-heater-thermometer nanomaterial, (ZIF-8,EuxTby)@AuNP, based on ZIF-8 (adsorbent), containing Eu3+ and/or Tb3+ ions (thermometer) and gold nanoparticles (AuNPs, heater) was designed, synthetized, characterized, and applied to controlled drug release. These composite materials were characterized as core-shell nanocrystals with the AuNPs being the core, around which the crystalline ZIF-8 has grown (shell) and onto which the lanthanide ions have been incorporated or chemosorbed. This shell of ZIF-8 acts as adsorbent of the drugs, the AuNPs act as heaters, while the luminescence intensities of the ligand and the lanthanide ions are used for temperature monitoring. This thermo-responsive material can be activated by visible irradiation to release small molecules in a controlled manner as established for the model pharmaceutical compounds 5-fluorouracil and caffeine. Computer simulations and transition state theory calculations shown that the diffusion of small molecules between neighboring pores in ZIF-8 is severely restricted and involves high-energy barriers. These findings imply that these molecules are uploaded onto and released from the ZIF-8 surface instead of being inside the cavities. This is the first report of ZIF-8 nanocrystals (adsorbents) containing simultaneously lanthanide ions as sensitive nanothermometers and AuNPs as heaters for controlled drug release in a physiological temperature range. These results provide a proof-of-concept that can be applied to other classes of materials, and offer a novel perspective on the design of self-assembly multifunctional thermo-responsive adsorbing materials that are easily prepared and promptly controllable.
Collapse
Affiliation(s)
- José Yago R Silva
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Cidade Universitária, 50740-560 Recife, PE, Brazil
| | - Yaicel G Proenza
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, 50740-560 Recife, PE, Brazil
| | - Leonis L da Luz
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, 50740-560 Recife, PE, Brazil
| | - Silvany de Sousa Araújo
- Departamento de Ciências Biológicas, Universidade Federal Rural de Pernambuco, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Manoel Adrião Gomes Filho
- Departamento de Ciências Biológicas, Universidade Federal Rural de Pernambuco, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Severino Alves Junior
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, 50740-560 Recife, PE, Brazil
| | - Thereza A Soares
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, 50740-560 Recife, PE, Brazil.
| | - Ricardo L Longo
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, 50740-560 Recife, PE, Brazil.
| |
Collapse
|
25
|
Kundu S, Mukherjee D, Maiti TK, Sarkar N. Highly Luminescent Thermoresponsive Green Emitting Gold Nanoclusters for Intracellular Nanothermometry and Cellular Imaging: A Dual Function Optical Probe. ACS APPLIED BIO MATERIALS 2019; 2:2078-2091. [DOI: 10.1021/acsabm.9b00107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Kolesnikov IE, Kalinichev AA, Kurochkin MA, Mamonova DV, Kolesnikov EY, Lähderanta E, Mikhailov MD. Bifunctional heater-thermometer Nd 3+-doped nanoparticles with multiple temperature sensing parameters. NANOTECHNOLOGY 2019; 30:145501. [PMID: 30625447 DOI: 10.1088/1361-6528/aafcb8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Achieving a combination of real-time diagnosis and therapy in a single platform with sensitive thermometry and efficient heat production is a crucial step towards controllable photothermal therapy. Here, Nd3+-doped Y2O3 nanoparticles prepared using the combined Pechini-foaming technique operating in the first and second biological windows were demonstrated as thermal sensors within the wide temperature range of 123-873 K, and as heaters with a temperature increase of 100 K. Thermal sensing was performed based on various approaches: luminescence intensity ratio (electronic levels; Stark sublevels), spectral line position and line bandwidth were used as temperature-dependent parameters. The applicability of these sensing parameters, along with relative thermal sensitivity and temperature resolution, are discussed and compared. The influence of Nd3+-doping concentration on thermometer and heater efficiency was also investigated.
Collapse
Affiliation(s)
- I E Kolesnikov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034, St. Petersburg, Russia. Lappeenranta University of Technology LUT, Skinnarilankatu 34, 53850, Lappeenranta, Finland
| | | | | | | | | | | | | |
Collapse
|
27
|
Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Protoc 2019; 14:1293-1321. [DOI: 10.1038/s41596-019-0145-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
|
28
|
Mazza MMA, Cardano F, Cusido J, Baker JD, Giordani S, Raymo FM. Ratiometric temperature sensing with fluorescent thermochromic switches. Chem Commun (Camb) 2019; 55:1112-1115. [PMID: 30624447 DOI: 10.1039/c8cc09482a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The connection of fluorescent chromophores to switchable heterocycles translates into molecular probes with ratiometric response to temperature. The opening and closing of their heterocyclic component equilibrates two emissive species with resolved fluorescence. Their relative emission intensities change monotonically with temperature to enable the visualization of thermal distributions at the microscale.
Collapse
Affiliation(s)
- Mercedes M A Mazza
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, Coral Gables, USA.
| | - Francesca Cardano
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, Coral Gables, USA. and Nano Carbon Materials, Istituto Italiano di Tecnologia, Turin, Italy and Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Janet Cusido
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, Coral Gables, USA. and Department of Natural and Social Sciences, Miami Dade College - InterAmerican Campus, Miami, USA
| | - James D Baker
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, Coral Gables, USA.
| | - Silvia Giordani
- Nano Carbon Materials, Istituto Italiano di Tecnologia, Turin, Italy and Department of Chemistry, University of Turin, Torino, Italy and School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Departments of Biology and Chemistry, University of Miami, Coral Gables, USA.
| |
Collapse
|
29
|
Zakhvataev VE. Nonequilibrium dynamic structure factor of a lipid bilayer in the presence of an in-plane temperature gradient. Phys Rev E 2018; 98:022404. [PMID: 30253585 DOI: 10.1103/physreve.98.022404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 01/02/2023]
Abstract
There is rapidly increasing evidence that nanoscale temperature heterogeneities are involved in important biological processes. Combining nanoheating and nanoscale thermosensors forms the basis of emerging unique methods of cell therapy, tissue engineering, and regenerative medicine. Understanding corresponding phenomena seems to require a mesoscopic nonequilibrium hydrodynamic theory. In this paper, a Langevin-type model of dynamics of phonon modes propagating along a bilayer lipid membrane in the presence of an in-plane temperature gradient is proposed. Corresponding quantitative estimates for the Brillouin components of the nonequilibrium dynamic structure factor and the equal-time longitudinal momentum-density correlation function for a lipid bilayer are obtained. The analysis reveals that for typical values of parameters of lipid bilayer, the longitudinal temperature gradient of the order of 5qK for wave numbers q from 0.01 to 1nm^{-1} induces significant asymmetry of the Brillouin components of the dynamic structure factor and long-range spatial correlations in the plane of the bilayer. The corresponding membrane temperature gradients seem to be typical or achievable for cellular processes responsible for intracellular temperature variations and such external physical impacts as high-intensity electromagnetic pulses or heating of membrane-associated nanoparticles.
Collapse
Affiliation(s)
- V E Zakhvataev
- Federal Research Center, "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences," Krasnoyarsk 660036, Russia and Siberian Federal University, Krasnoyarsk 660041, Russia
| |
Collapse
|
30
|
Yang F, Yang N, Huo X, Xu S. Thermal sensing in fluid at the micro-nano-scales. BIOMICROFLUIDICS 2018; 12:041501. [PMID: 30867860 PMCID: PMC6404956 DOI: 10.1063/1.5037421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
Temperature is one of the most fundamental parameters for the characterization of a physical system. With rapid development of lab-on-a-chip and biology at single cell level, a great demand has risen for the temperature sensors with high spatial, temporal, and thermal resolution. Nevertheless, measuring temperature in liquid environment is always a technical challenge. Various factors may affect the sensing results, such as the fabrication parameters of built-in sensors, thermal property of electrical insulating layer, and stability of fluorescent thermometers in liquid environment. In this review, we focused on different kinds of micro/nano-thermometers applied in the thermal sensing for microfluidic systems and cultured cells. We discussed the advantages and limitations of these thermometers in specific applications and the challenges and possible solutions for more accurate temperature measurements in further studies.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Nana Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Xiaoye Huo
- Faculty of Mechanical Engineering, Micro-and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
31
|
Bustamante N, Ielasi G, Bedoya M, Orellana G. Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II) Complexes. Polymers (Basel) 2018; 10:polym10030234. [PMID: 30966269 PMCID: PMC6414956 DOI: 10.3390/polym10030234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022] Open
Abstract
Temperature is a key parameter in many fields and luminescence-based temperature sensing is a solution for those applications in which traditional (mechanical, electrical, or IR-based) thermometers struggle. Amongst the indicator dyes for luminescence thermometry, Ru(II) polyazaheteroaromatic complexes are an appealing option to profit from the widespread commercial technologies for oxygen optosensing based on them. Six ruthenium dyes have been studied, engineering their structure for both photostability and highest temperature sensitivity of their luminescence. The most apt Ru(II) complex turned out to be bis(1,10-phenanthroline)(4-chloro-1,10-phenanthroline)ruthenium(II), due to the combination of two strong-field chelating ligands (phen) and a substituent with electron withdrawing effect on a conjugated position of the third ligand (4-Clphen). In order to produce functional sensors, the dye has been best embedded into poly(ethyl cyanoacrylate), due to its low permeability to O₂, high temperature sensitivity of the indicator dye incorporated into this polymer, ease of fabrication, and excellent optical quality. Thermosensitive elements have been fabricated thereof as optical fiber tips for macroscopic applications (water courses monitoring) and thin spots for microscopic uses (temperature measurements in cell culture-on-a-chip). With such dye/polymer combination, temperature sensing based on luminescence lifetime measurements allows 0.05 °C resolution with linear response in the range of interest (0⁻40 °C).
Collapse
Affiliation(s)
- Nelia Bustamante
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Guido Ielasi
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Maximino Bedoya
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Guillermo Orellana
- Chemical Optosensors and Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
32
|
Cortelletti P, Skripka A, Facciotti C, Pedroni M, Caputo G, Pinna N, Quintanilla M, Benayas A, Vetrone F, Speghini A. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows. NANOSCALE 2018; 10:2568-2576. [PMID: 29350231 DOI: 10.1039/c7nr06141b] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lanthanide-activated SrF2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd3+ and Yb3+) NIR emissions was applied to investigate the thermometric properties of the nanoparticles. It was found that an appropriate doping with Er3+ ions can increase the thermometric properties of the Nd3+-Yb3+ coupled systems. In addition, a core containing Yb3+ and Tm3+ can generate light in the visible and UV regions upon near-infrared (NIR) laser excitation at 980 nm. The multishell structure combined with the rational choice of dopants proves to be particularly important to control and enhance the performance of nanoparticles as NIR nanothermometers.
Collapse
Affiliation(s)
- P Cortelletti
- Nanomaterials Research Group, Dipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37134 Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shishkin I, Alon T, Dagan R, Ginzburg P. Temperature and Phase Transition Sensing in Liquids with Fluorescent Probes. ACTA ACUST UNITED AC 2017. [DOI: 10.1557/adv.2017.391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Otto S, Scholz N, Behnke T, Resch-Genger U, Heinze K. Thermo-Chromium: A Contactless Optical Molecular Thermometer. Chemistry 2017; 23:12131-12135. [DOI: 10.1002/chem.201701726] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Sven Otto
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg-University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Germany
| | - Norman Scholz
- Division 1.10; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Thomas Behnke
- Division 1.10; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Ute Resch-Genger
- Division 1.10; Federal Institute for Materials Research and Testing (BAM); Richard-Willstätter-Strasse 11 12489 Berlin Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg-University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
35
|
Three-Dimensional Tissue Models and Available Probes for Multi-Parametric Live Cell Microscopy: A Brief Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1035:49-67. [DOI: 10.1007/978-3-319-67358-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Dramićanin MD. Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review. Methods Appl Fluoresc 2016; 4:042001. [PMID: 28192289 DOI: 10.1088/2050-6120/4/4/042001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Temperature is important because it has an effect on even the tiniest elements of daily life and is involved in a broad spectrum of human activities. That is why it is the most commonly measured physical quantity. Traditional temperature measurements encounter difficulties when used in some emerging technologies and environments, such as nanotechnology and biomedicine. The problem may be alleviated using optical techniques, one of which is luminescence thermometry. This paper reviews the state of luminescence thermometry and presents different temperature read-out schemes with an emphasis on those utilizing the downshifting emission of lanthanide-doped metal oxides and salts. The read-out schemes for temperature include those based on measurements of spectral characteristics of luminescence (band positions and shapes, emission intensity and ratio of emission intensities), and those based on measurements of the temporal behavior of luminescence (lifetimes and rise times). This review (with 140 references) gives the basics of the fundamental principles and theory that underlie the methods presented, and describes the methodology for the estimation of their performance. The major part of the text is devoted to those lanthanide-doped metal oxides and salts that are used as temperature probes, and to the comparison of their performance and characteristics.
Collapse
|
37
|
Jenkins J, Borisov SM, Papkovsky DB, Dmitriev RI. Sulforhodamine Nanothermometer for Multiparametric Fluorescence Lifetime Imaging Microscopy. Anal Chem 2016; 88:10566-10572. [PMID: 27696826 DOI: 10.1021/acs.analchem.6b02675] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Live cells function within narrow limits of physiological temperature (T) and O2 and metabolite concentrations. We have designed a cell-permeable T-sensitive fluorescence lifetime-based nanoprobe based on lipophilic sulforhodamine, which stains 2D and 3D cell models, shows cytoplasmic localization, and has a robust response to T (∼0.037 ns/K). Subsequently, we evaluated the probe and fluorescence lifetime imaging microscopy (FLIM) technique for combined imaging of T and O2 gradients in metabolically active cells. We found that in adherent 2D culture of HCT116 cells intracellular T and O2 are close to ambient values. However, in 3D spheroid structures having size >200 μm, T and O2 gradients become pronounced. These microgradients can be enhanced by treatment with mitochondrial uncouplers or dissipated by drug-induced disaggregation of the spheroids. Thus, we demonstrate the existence of local microgradients of T in 3D cell models and utility of combined imaging of O2 and T.
Collapse
Affiliation(s)
- James Jenkins
- School of Biochemistry and Cell Biology, University College Cork , Cork, Ireland
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology , 8010 Graz, Austria
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork , Cork, Ireland
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, University College Cork , Cork, Ireland
| |
Collapse
|
38
|
Bai T, Gu N. Micro/Nanoscale Thermometry for Cellular Thermal Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4590-610. [PMID: 27172908 DOI: 10.1002/smll.201600665] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/28/2016] [Indexed: 05/25/2023]
Abstract
Temperature is a key parameter to regulate cell function, and biochemical reactions inside a cell in turn affect the intracellular temperature. It's vitally necessary to measure cellular temperature to provide sufficient information to fully understand life science, while the conventional methods are incompetent. Over the last decade, many ingenious thermometers have been developed with the help of nanotechnology, and real-time intracellular temperature measurement at the micro/nanoscale has been realized with high temporal-spatial resolution. With the help of these techniques, several mechanisms of thermogenesis inside cells have been investigated, even in subcellular organelles. Here, current developments in cellular thermometers are highlighted, and a picture of their applications in cell biology is presented. In particular, temperature measurement principle, thermometer design and latest achievements are also introduced. Finally, the existing opportunities and challenges in this ongoing field are discussed.
Collapse
Affiliation(s)
- Tingting Bai
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| |
Collapse
|
39
|
Wu Y, Liu J, Ma J, Liu Y, Wang Y, Wu D. Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14396-14405. [PMID: 27197838 DOI: 10.1021/acsami.6b03366] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A series of fluorescent nanothermometers (FTs) was prepared with Rhodamine dye-incorporated Pluronic F-127-melamine-formaldehyde composite polymer nanoparticles (R-F127-MF NPs). The highly soluble Rhodamine dye molecules were bound with Pluronic F127 micelles and subsequently incorporated in the cross-linked MF resin NPs during high-temperature cross-link treatment. The morphology and chemical structure of R-F127-MF NPs were characterized with dynamic light scattering, electron microscopy, and Fourier-transform infrared (FTIR) spectra. Fluorescence properties and thermoresponsivities were analyzed using fluorescence spectra. R-F127-MF NPs are found to be monodispersed, presenting a size range of 88-105 nm, and have bright fluorescence and high stability in severe treatments such as autoclave sterilization and lyophilization. By simultaneously incorporating Rhodamine B and Rhodamine 110 (as reference) dyes at a doping ratio of 1:400 in the NPs, ratiometric FTs with a high sensibility of 7.6%·°C(-1) and a wide temperature sensing range from -20 to 110 °C were obtained. The FTs exhibit good stability in solutions with varied pH, ionic strengths, and viscosities and have similar working curves in both intracellular and extracellular environments. Cellular temperature variations in Hela cells during microwave exposure were successfully monitored using the FTs, indicating their considerable potential applications in the biomedical field.
Collapse
Affiliation(s)
- Youshen Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology Xi'an Jiaotong University Xi'an, 710049, People's Republic of China
| | - Jiajun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology Xi'an Jiaotong University Xi'an, 710049, People's Republic of China
| | - Jingwen Ma
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology Xi'an Jiaotong University Xi'an, 710049, People's Republic of China
| | - Yongchun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology Xi'an Jiaotong University Xi'an, 710049, People's Republic of China
| | - Ya Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology Xi'an Jiaotong University Xi'an, 710049, People's Republic of China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology Xi'an Jiaotong University Xi'an, 710049, People's Republic of China
| |
Collapse
|
40
|
|