1
|
Liu H, Wang S, Fu Y, Shi C, Song Y, Zhang L, Chen C, Ling Z. Dependence of the formation kinetics of carbon dioxide hydrate on clay aging for solid carbon dioxide storage. J Colloid Interface Sci 2024; 675:347-356. [PMID: 38972122 DOI: 10.1016/j.jcis.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Clay-based marine sediments have great potential for safe and effective carbon dioxide (CO2) encapsulation by storing enormous amounts of CO2 in solid gas hydrate form. However, the aging of clay with time changes the surface properties of clay and complicates the CO2 hydrate formation behaviors in sediments. Due to the long clay aging period, it is difficult to identify the role of clay aging in the formation of CO2 hydrate in marine sediments. Here, we used ultrasonication and plasma treatment to simulate the breakage and oxidation of clay nanoflakes in aging and investigated the influence of clay aging on CO2 hydrate formation kinetics. We found that the breakage and oxidation of clay nanoflakes would disrupt the siloxane rings and graft hydroxyl on the clay nanoflakes. This decreased the negative charge density of clay nanoflakes and weakened the interfacial interaction of clay nanoflakes with the surrounding water. Therefore, the small clay nanoflakes enriched in hydroxyl would disrupt the surrounding tetrahedral water structure analogous to the CO2 hydrate, resulting in the prolongation of CO2 hydrate nucleation. These results revealed the influence of the structure-function relationship of clay nanoflakes with CO2 hydrate formation and are favorable for the development of hydrate-based CO2 storage.
Collapse
Affiliation(s)
- Huiquan Liu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuai Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yixuan Fu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Changrui Shi
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| | - Lunxiang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Cong Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Zheng Ling
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| |
Collapse
|
2
|
Su C, Han L, An H, Cai W, Shao X. Structures of water on the surface of anatase TiO 2 studied by diffuse reflectance near-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122674. [PMID: 36996517 DOI: 10.1016/j.saa.2023.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Investigating the structures of water on metal oxides is helpful for understanding the mechanism of the adsorptions in the presence of water. In this work, the structures of adsorbed water molecules on anatase TiO2 (101) were studied by diffuse reflectance near-infrared spectroscopy (DR-NIRS). With resolution enhanced spectrum by continuous wavelet transform (CWT), the spectral features of adsorbed water at different sites were found. In the spectrum of dried TiO2 powder, there is only the spectral feature of the water adsorbed at 5-coordinated titanium atoms (Ti5c). With the increase of the adsorbed water, the spectral feature of the water at 2-coordinated oxygen atoms (O2c) emerges first, and then that of the water interacting with the adsorbed water can be observed. When adenosine triphosphate (ATP) was adsorbed on TiO2, the intensity of the peaks related to the adsorbed water decreases, indicating that the adsorbed water is replaced by ATP due to the strong affinity to Ti5c. Therefore, there is a clear correlation between the peak intensity of the adsorbed water and the adsorbed quantity of ATP. Water can be a NIR spectroscopic probe to detect the quantity of the adsorbed ATP. A partial least squares (PLS) model was established to predict the content of adsorbed ATP by the spectral peaks of water. The recoveries of validation samples are in the range of 92.00-114.96% with the relative standard deviations (RSDs) in a range of 2.13-5.82%.
Collapse
Affiliation(s)
- Changlin Su
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Li Han
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hongle An
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
3
|
Nizomov Z, Asozoda M, Nematov D. Characteristics of Nanoparticles in Aqueous Solutions of Acetates and Sulfates of Single and Doubly Charged Cations. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Patil KR, Barge SS, Bhosale BD, Dagade DH. Influence of protic ionic liquids on hydration of glycine based peptides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120378. [PMID: 34543989 DOI: 10.1016/j.saa.2021.120378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The structure of water, especially around the solute is thought to play an important role in many biological and chemical processes. Water-peptide and cosolvent-peptide interactions are crucial in determining the structure and function of protein molecules. In this work, we present the H-bonding analysis for model peptides like glycyl-glycine (gly-gly), glycine-ւ-valine (gly-val), glycyl-ւ-leucine (gly-leu) and triglycine (trigly) and triethylammonium based carboxylate protic ionic liquids (PILs) in aqueous solutions as well as for peptides in ∼0.2 mol·L-1 of aqueous PIL solutions in the spectral range of 7800-5500 cm-1 using Fourier transform near-infrared (FT-NIR) spectroscopy at 298.15 K. The hydration numbers for peptides and PILs were obtained using NIR method of simultaneous estimation of hydration spectrum and hydration number of a solute dissolved in water. The H-bond of water molecules around peptides and PILs are found to be stronger and shorter than those in pure liquid water. We observe that the hydration shell around zwitterions is a clathrate-like cluster of water in which ions entrap. Watery network analysis confirms that singly H-bonded species or NHBs changes to partial or distorted ice-like structures of water in the hydration shell of PILs. The overall water H-bonding in the hydration sphere of PILs increases in the order TEAF < TEAA < TEAG < TEAPy ≈ TEAP < TEAB. The influence of PILs on hydration behavior of peptides is explored in terms of H-bonding, cooperativity, hydrophobicity, water structural changes, ionic interactions etc.
Collapse
Affiliation(s)
- Kunal R Patil
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Seema S Barge
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | | | - Dilip H Dagade
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India.
| |
Collapse
|
5
|
Analysis of hydration water around human serum albumin using near-infrared spectroscopy. Int J Biol Macromol 2019; 138:927-932. [PMID: 31362025 DOI: 10.1016/j.ijbiomac.2019.07.183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 11/24/2022]
Abstract
Hydration plays a fundamental role in maintaining the structure and function of proteins. To get a generalized picture of hydrogen bond network of water surrounding human serum albumin (HSA), near-infrared (NIR) spectroscopy was adopted to explore the hydration induced structural changes of water with HSA concentration from 0.015 to 0.746 mmol/L. As HSA concentration increases, there was a nonlinear change in molar extinction coefficients inconsistent with Beer-Lambert law indicating the changes of hydration water induced by HSA and subsequently confirmed by the hydration number. The decreasing of hydration number with HSA concentration was explained by an overlapping hydration layer model. Resolution of the difference spectra with McCabe-Fisher method and aquaphotomics clearly differentiated the hydrogen bonding of hydration water around HSA. A comparison of resolved hydration spectra highlights that free hydrogen bonded water is present in the hydration layer. As the concentration increased, a more ordered hydrogen bonded water network forms around HSA. These measurements provide unique insight into the relationship between the hydration water and HSA, which is important for understanding the dynamics of protein solution in many biochemical processes, and may serve as a basis for the purification in production.
Collapse
|
6
|
Baum M, Rieutord F, Juranyi F, Rey C, Rébiscoul D. Dynamical and Structural Properties of Water in Silica Nanoconfinement: Impact of Pore Size, Ion Nature, and Electrolyte Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10780-10794. [PMID: 31345036 DOI: 10.1021/acs.langmuir.9b01434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we characterized the structure and the dynamics at a picosecond scale of water molecules in aqueous solutions with cations having various kosmotropic properties (XCl2 where X = Ba2+, Ca2+, and Mg2+) confined in highly ordered mesoporous silica (MCM-41 and grafted MCM-41) by Fourier transform infrared spectroscopy and quasi-elastic neutron scattering. We pinpointed the critical pore size and the electrolyte concentration at which the influence of the ion nature becomes the main factor affecting the water properties. These results suggest that whatever the ions kosmotropic properties, for pore sizes ϕp < 2.6 nm and [XCl2] ≤ 1 M, the water dynamics is mainly slowed down by the size of the confinement. For pore sizes of 6.6 nm, the water dynamics depends on the concentration and kosmotropic properties of the ion more than on the confinement. The water properties within the interfacial layer were also assessed and related to the surface ion excesses obtained by sorption isotherms. We showed that, for pore sizes ϕp ≥ 2.6 nm, the surface ion excess at the pore surface is the main driver affecting the structural properties of water molecules and their dynamics within the interfacial layer.
Collapse
Affiliation(s)
- Markus Baum
- CEA, ICSM - UMR 5257 CEA-CNRS-UM-ENSCM , 30207 Bagnols-sur-Cèze Cedex, France
| | | | - Fanni Juranyi
- Paul-Scherrer-Institute , 5232 Villigen PSI, Switzerland
| | - Cyrielle Rey
- CEA, ICSM - UMR 5257 CEA-CNRS-UM-ENSCM , 30207 Bagnols-sur-Cèze Cedex, France
| | - Diane Rébiscoul
- CEA, ICSM - UMR 5257 CEA-CNRS-UM-ENSCM , 30207 Bagnols-sur-Cèze Cedex, France
| |
Collapse
|
7
|
Wang L, Zhu X, Cai W, Shao X. Understanding the role of water in the aggregation of poly(N,N-dimethylaminoethyl methacrylate) in aqueous solution using temperature-dependent near-infrared spectroscopy. Phys Chem Chem Phys 2019; 21:5780-5789. [PMID: 30801574 DOI: 10.1039/c8cp07153e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For understanding the role of water in the aggregation of polymers, the variation of water structures with the structural change of polymers in the process of aggregation was studied by temperature-dependent near-infrared (NIR) spectroscopy. The NIR spectra of the aqueous poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) solutions of different concentrations were measured at different temperatures. The spectral changes of the polymer and water with temperature were analyzed by N-way principal component analysis (NPCA). It was found that, at low concentration, the chains of the polymer tend to form a loose hydrophobic structure below 36 °C and then aggregate into a micelle at a lower critical solution temperature (LCST) of around 39 °C. In the process of the aggregation, the water species with two hydrogen bonds (S2) increases gradually before 36 °C and then a sudden decrease occurs after that temperature. The results clearly indicate that water species S2 plays an important role in the formation of the intermediate, i.e., the loose hydrophobic structure of the polymer chains linked by the two hydrogen bonds of S2 water. When the temperature increases, the dissociation of the hydrogen bonds enables the intermediate to be destroyed to form a micelle structure. For the high concentration solution, however, the spectral information of S2 was not found in the aggregation, suggesting direct formation of the micelle from the dehydrated chains.
Collapse
Affiliation(s)
- Li Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | |
Collapse
|
8
|
Mutual factor analysis for quantitative analysis by temperature dependent near infrared spectra. Talanta 2018; 183:142-148. [PMID: 29567156 DOI: 10.1016/j.talanta.2018.02.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 11/22/2022]
Abstract
Temperature dependent near infrared (NIR) spectroscopy has been developed for analyzing multi-component mixtures and understanding the molecular interactions in solutions. In this work, a chemometric method named as mutual factor analysis (MFA) was proposed for the analysis of temperature dependent NIR spectra. The method extracts the common spectral feature contained in the spectra of different temperature or different concentration. The relative quantity of the extracted spectral feature is proportional to the temperature or concentration. From the spectra of water-glucose mixtures, both the spectral variations induced by temperature and concentration are obtained and the variations are correlated with the inducements, respectively, in a very good linearity. Serum samples were used for validation of the method. An acceptable calibration model with a good correlation coefficient (R2 = 0.8639) was obtained for glucose measurement. The relative deviations of the measured concentrations from the calibration model are in the range of -18.7-8.52%, which are in a reasonable level for clinical uses. More importantly, the calculations are based on the spectral information of water that has interactions with the analyte. This provides a new way for quantitative analyses of bio-systems.
Collapse
|
9
|
Roy S, Galib M, Schenter GK, Mundy CJ. On the relation between Marcus theory and ultrafast spectroscopy of solvation kinetics. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.12.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Dagade DH, Barge SS. H-Bonding in Water of Hydration: NIR Spectral Studies of Hydration Behavior of 1-n
-Alkyl-3-metylimidazolium-Based Bromide and Amino Acid Ionic Liquids at 298.15 K. ChemistrySelect 2017. [DOI: 10.1002/slct.201702281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dilip H. Dagade
- Department of Chemistry; Shivaji University; Kolhapur - 416 004 INDIA
| | - Seema S. Barge
- Department of Chemistry; Shivaji University; Kolhapur - 416 004 INDIA
| |
Collapse
|
11
|
Spectra of excess molar absorptivity of aqueous solutions of ionic liquids: Universal chromophores for aqueous electrolytes? J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|