1
|
Mohebbinia Z, Firouzi R, Karimi-Jafari MH. Improving protein-ligand docking results using the Semiempirical quantum mechanics: testing on the PDBbind 2016 core set. J Biomol Struct Dyn 2024:1-11. [PMID: 38165642 DOI: 10.1080/07391102.2023.2299742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
Molecular docking techniques are routinely employed for predicting ligand binding conformations and affinities in the in silico phase of the drug design and development process. In this study, a reliable semiempirical quantum mechanics (SQM) method, PM7, was employed for geometry optimization of top-ranked poses obtained from two widely used docking programs, AutoDock4 and AutoDock Vina. The PDBbind core set (version 2016), which contains high-quality crystal protein - ligand complexes with their corresponding experimental binding affinities, was used as an initial dataset in this research. It was shown that docking pose optimization improves the accuracy of pose predictions and is very useful for the refinement of docked complexes via removing clashes between ligands and proteins. It was also demonstrated that AutoDock Vina achieves a higher sampling power than AutoDock4 in generating accurate ligand poses (RMSD ≤ 2.0 Å), while AutoDock4 exhibits a better ranking power than AutoDock Vina. Finally, a new protocol based on a combination of the results obtained from the two docking programs was proposed for structure-based virtual screening studies, which benefits from the robust sampling abilities of AutoDock Vina and the reliable ranking performance of AutoDock4.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zainab Mohebbinia
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Rohoullah Firouzi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | | |
Collapse
|
2
|
Wei J, Yang J, Li Y, Song Y. Nonlinear optical properties and optimization strategies of D-π-A type phenylamine derivatives in the near-infrared region. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121539. [PMID: 35777228 DOI: 10.1016/j.saa.2022.121539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Modifying simple molecular structures to significantly improve nonlinear optical (NLO) performance is a primary prerequisite for scientific research. Based on the four phenylamine derivatives reported in previous studies, we designed four organic nonlinear molecules by changing the acceptor group and π-linker. (Time-dependent) density functional theory (DFT/TD-DFT) was performed on molecular geometry optimization, the contribution of π electrons to the bond order, linear and two-photon absorption (TPA) spectra, the intra-molecular charge transfer matrix (CTM), and NLO coefficients. These aspects were considered to analyze in detail how the structural modification of acceptors and π-linkers affects NLO characteristics. The three modification methods were: adding a carbonyl group at the junction of the π-linker and the acceptor group, adding a carbonyl group and a nitrogen atom to the acceptor group, and replacing the quinolinone with a pyrenyl group as the π-linker. The latter two methods can significantly reduce the excitation energy and enhance the intensity of intra-molecular charge transfer during the two-photon transition. The maximum TPA cross-sections and wavelengths of the designed molecules are DPPM (84722.6 GM, 815.7 nm) and DDPM (21600.6 GM, 781.3 nm). These two molecules have large TPA cross-sections in the near-infrared region, which renders them as possible NLO materials with broad application prospects.
Collapse
Affiliation(s)
- Jia Wei
- School of Physical Science and Technology, Soochow University, Soochow 215006, Jiangsu, China
| | - Junyi Yang
- School of Physical Science and Technology, Soochow University, Soochow 215006, Jiangsu, China
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Yinglin Song
- School of Physical Science and Technology, Soochow University, Soochow 215006, Jiangsu, China; Department of Physics, Harbin Institute of Technology, Harbin 150006, Heilongjiang, China.
| |
Collapse
|
3
|
Molecular structure, covalent and non-covalent interactions of an oxaborole derivative (L-PRO2F3PBA): FTIR, X-ray diffraction and QTAIM approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Mandal N, Datta A. Molecular designs for expanding the limits of ultralong C-C bonds and ultrashort HH non-bonded contacts. Chem Commun (Camb) 2020; 56:15377-15386. [PMID: 33210669 DOI: 10.1039/d0cc06690g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent experiments have reported the formation of very long C-C bonds (dC-C > 1.80 Å) and very short HH non-bonded contacts (dHH < 1.5 Å) in several sets of molecules. Both these rare phenomena arise due to specific donor-acceptor interactions and London dispersion interactions respectively. Favorable negative hyperconjugation, namely H2N(lone-pair) →σ*(C-C), creates an ultralong C-C bond in diamino-o-carborane with dC-C > 1.829 Å and a planar amine reminiscent of a transition-state like structure for ammonia inversion. The small and narrow barrier favours rapid inversion through quantum mechanical tunnelling (QMT) and produces a translationally averaged planar amine as observed in the experiments. On the other hand, designing specific confined molecular cavities or chambers like in,in-bis(hydrosilane) or its germanane analogs furnishes an ultrashort HH distance = 1.47 Å and 1.38 Å respectively. The predisposition of such closely placed HH contacts arises from the rather effective attractive dispersion interactions between them. Controlling the strength of the dispersion interactions provides a rich landscape for realizing such close HH distances. Molecular design ably assisted by computational modeling to further tune these interactions provides new avenues to break the glass-ceilings of ultralong C-C bonds or ultrashort HH contacts. Dispersion-corrected DFT calculations and ab initio molecular dynamics simulations generate a large library of such unique features in a diverse class of molecules. This feature article highlights the design principles to realize hitherto longest C-C bonds/shortest HH contacts.
Collapse
Affiliation(s)
- Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur - 700032, Kolkata, West Bengal, India.
| | | |
Collapse
|
5
|
Gryn’ova G, Corminboeuf C. Steric "attraction": not by dispersion alone. Beilstein J Org Chem 2018; 14:1482-1490. [PMID: 30013675 PMCID: PMC6037011 DOI: 10.3762/bjoc.14.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/02/2018] [Indexed: 12/23/2022] Open
Abstract
Non-covalent interactions between neutral, sterically hindered organic molecules generally involve a strong stabilizing contribution from dispersion forces that in many systems turns the 'steric repulsion' into a 'steric attraction'. In addition to London dispersion, such systems benefit from electrostatic stabilization, which arises from a short-range effect of charge penetration and gets bigger with increasing steric bulk. In the present work, we quantify this contribution for a diverse set of molecular cores, ranging from unsubstituted benzene and cyclohexane to their derivatives carrying tert-butyl, phenyl, cyclohexyl and adamantyl substituents. While the importance of electrostatic interactions in the dimers of sp2-rich (e.g., π-conjugated) cores is well appreciated, less polarizable assemblies of sp3-rich systems with multiple short-range CH···HC contacts between the bulky cyclohexyl and adamantyl moieties are also significantly influenced by electrostatics. Charge penetration is drastically larger in absolute terms for the sp2-rich cores, but still has a non-negligible effect on the sp3-rich dimers, investigated herein, both in terms of their energetics and equilibrium interaction distances. These results emphasize the importance of this electrostatic effect, which has so far been less recognized in aliphatic systems compared to London dispersion, and are therefore likely to have implications for the development of force fields and methods for crystal structure prediction.
Collapse
Affiliation(s)
- Ganna Gryn’ova
- Institut des Sciences et Ingénierie Chimiques, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Institut des Sciences et Ingénierie Chimiques, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Kartashynska E, Vysotsky Y, Fainerman V, Vollhardt D, Miller R. Quantum-chemical analysis of condensed monolayer phases of N-alkanoyl-substituted alanine at the air/water interface. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Yourdkhani S, Jabłoński M, Echeverría J. Attractive PHHP interactions revealed by state-of-the-art ab initio calculations. Phys Chem Chem Phys 2017; 19:28044-28055. [PMID: 28994835 DOI: 10.1039/c7cp04412g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report in this work a combined structural and state-of-the-art computational study of homopolar P-HH-P intermolecular contacts. Database surveys have shown the abundance of such surprisingly unexplored contacts, which are usually accompanied by other weak interactions in the solid state. By means of a detailed theoretical study utilizing SAPT(DFT), MP2, SCS-MP2, MP2C and CCSD(T) methods and both aug-cc-pVXZ and aug-cc-pCVXZ (X = D, T, Q, 5) basis sets as well as extrapolation to the CBS limit, we have shown that P-HH-P contacts are indeed attractive and considerably strong. SAPT(DFT) calculations have revealed the dispersive nature of the P-HH-P interaction with only minor contribution of the inductive term, whereas the first-order electrostatic term is clearly overbalanced by the first-order exchange energy. In general the computed interaction energies follow the trend: E ≈ E < E < E. Our results have also shown that the aug-cc-pVDZ (or aug-cc-pCVDZ) basis set is not yet well balanced and that the second-order dispersion energy term is the slowest converging among all SAPT(DFT) energy components. Compared to aug-cc-pVXZ basis sets, their core-correlation counterparts have a modest influence on all supermolecular interaction energies and a negligible influence on both the SAPT(DFT) interaction energy and its components.
Collapse
Affiliation(s)
- Sirous Yourdkhani
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | | | | |
Collapse
|
8
|
Experimental and theoretical study on the molecular structure, covalent and non-covalent interactions of 2,4-dinitrodiphenylamine: X-ray diffraction and QTAIM approach. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Rösel S, Quanz H, Logemann C, Becker J, Mossou E, Cañadillas-Delgado L, Caldeweyher E, Grimme S, Schreiner PR. London Dispersion Enables the Shortest Intermolecular Hydrocarbon H···H Contact. J Am Chem Soc 2017; 139:7428-7431. [DOI: 10.1021/jacs.7b01879] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sören Rösel
- Institute
of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Henrik Quanz
- Institute
of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Christian Logemann
- Institut
für Anorganische und Analytische Chemie, Justus-Liebig Universität, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Jonathan Becker
- Institut
für Anorganische und Analytische Chemie, Justus-Liebig Universität, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Estelle Mossou
- Institute Laue-Langevin, Rue Jules
Horowitz 6, BP 156, 38042 Grenoble Cedex 9, France
- Faculty
of Natural Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Laura Cañadillas-Delgado
- Institute Laue-Langevin, Rue Jules
Horowitz 6, BP 156, 38042 Grenoble Cedex 9, France
- Centro Universitario de la Defensa de Zaragoza, Ctra Huesca s/n, 50090 Zaragoza, Spain
| | - Eike Caldeweyher
- Mulliken
Center for Theoretical Chemistry, Institute of Physical and Theoretical
Chemistry, University Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken
Center for Theoretical Chemistry, Institute of Physical and Theoretical
Chemistry, University Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Peter R. Schreiner
- Institute
of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
10
|
Mandal N, Pratik SM, Datta A. Exploring Ultrashort Hydrogen-Hydrogen Nonbonded Contacts in Constrained Molecular Cavities. J Phys Chem B 2017; 121:825-834. [PMID: 28055206 DOI: 10.1021/acs.jpcb.6b12391] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Confined molecular chambers such as macrocycle bridged E1-H···H-E2 (E1(E2) = Si(Si), 1) exhibit rare ultrashort H···H nonbonded contacts (d(H···H) = 1.56 Å). In this article, on the basis of density functional theory and ab initio molecular dynamics simulations, we propose new molecular motifs where d(H···H) can be reduced to 1.44 Å (E1(E2) = Si(Ge), 3). Further tuning the structure of the macrocycle by replacing the bulky phenyl groups by ethylenic spacers and substitution of the H-atoms by -CN groups makes the cavity more compact and furnishes even shorter d(H···H) = 1.38 Å (E1(E2) = Ge(Ge), 8). These unusually close H···H nonbonded contacts originate from the strong attractive noncovalent interactions between them, which are evident from various computational indicators, namely, NCI, Wiberg bond index, relaxed force constant, quantum theory of atoms in molecules, and natural orbitals for chemical valence combined with the extended transition state method analyses. Substantial stabilization of the in,in-configuration (exhibiting short H···H contacts) compared with the out,out-configuration (by ∼5.7 kcal/mol) and statistically insignificant fluctuations in ⟨d(H···H)⟩ and ⟨θav⟩(θ(E1(E2)-H···H = 152°) at room temperature confirm that the ultrashort H···H distances in these molecules are thermodynamically stable and would be persistent under ambient experimental conditions.
Collapse
Affiliation(s)
- Nilangshu Mandal
- Department of Spectroscopy, Indian Association for the Cultivation of Science , 2A and 2B Raja S. C. Mullick Road, Jadavpur, 700032 Kolkata, West Bengal, India
| | - Saied Md Pratik
- Department of Spectroscopy, Indian Association for the Cultivation of Science , 2A and 2B Raja S. C. Mullick Road, Jadavpur, 700032 Kolkata, West Bengal, India
| | - Ayan Datta
- Department of Spectroscopy, Indian Association for the Cultivation of Science , 2A and 2B Raja S. C. Mullick Road, Jadavpur, 700032 Kolkata, West Bengal, India
| |
Collapse
|
11
|
Theoretical study of piezoelectrochemical reactions in molecular compression chambers: In-situ generation of molecular hydrogen. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.08.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|