1
|
Miranda-Quintana RA, Chen L, Craig VSJ, Smiatek J. Quantitative Solvation Energies from Gas-Phase Calculations: First-Principles Charge Transfer and Perturbation Approaches. J Phys Chem B 2023; 127:2546-2551. [PMID: 36917810 DOI: 10.1021/acs.jpcb.2c08907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
We present a first-principles approach for the calculation of solvation energies and enthalpies with respect to different ion pair combinations in various solvents. The method relies on the conceptual density functional theory (DFT) of solvation, from which detailed expressions for the solvation energies can be derived. In addition to fast and straightforward gas phase calculations, we also study the influence of modified chemical reactivity descriptors in terms of electronic perturbations. The corresponding phenomenological changes in molecular energy levels can be interpreted as the influence of continuum solvents. Our approach shows that the introduction of these modified expressions is essential for a quantitative agreement between the calculated and the experimental results.
Collapse
Affiliation(s)
- Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32603, United States
| | - Lexin Chen
- Department of Chemistry, University of Florida, Gainesville, Florida 32603, United States
| | - Vincent S J Craig
- Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
2
|
Kobayashi T, Smiatek J, Fyta M. Probing the distribution of ionic liquid mixtures at charged and neutral interfaces via simulations and lattice-gas theory. Phys Chem Chem Phys 2022; 24:16471-16483. [PMID: 35766260 DOI: 10.1039/d2cp01346k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room temperature ionic liquid solutions confined between neutral and charged surfaces are investigated by means of atomistic Molecular Dynamics simulations. We study 1-ethyl-3-methylimidazolium dicyanamide ([EMIm]+[DCA]-) in water or dimethylsulfoxide (DMSO) mixtures in confinement between two interfaces. The analysis is based on the comparison of the molecular species involved and the charged state of the surfaces. Focus is given on the influence of different water/DMSO concentrations on the microstructuring and accumulation of each species. Thermodynamic aspects, such as the entropic contributions in the observed trends are obtained from the simulations using a lattice-gas theory. The results clearly underline the differences in these properties for the water and DMSO mixtures and unravel the underlying mechanisms and inherent details. We were able to pinpoint the importance of the size and the relative permittivity of the molecules in guiding their microstructuring in the vicinity of the surfaces, as well as their interactions with the latter, i.e. the solute-surface interactions. The influence of water and DMSO on the overscreening at charged interfaces is also discussed. The analysis on the molecular accumulation at the interfaces allows us to predict whether the accumulation is entropy or enthalpy driven, which has an impact in the removal of the molecular species from the surfaces. We discuss the impact of this work in providing an essential understanding towards a careful design of electrochemical elements.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Maria Fyta
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| |
Collapse
|
3
|
Miranda-Quintana RA, Smiatek J. Specific Ion Effects in Different Media: Current Status and Future Challenges. J Phys Chem B 2021; 125:13840-13849. [PMID: 34918938 DOI: 10.1021/acs.jpcb.1c07957] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We discuss the current state of research as well as the future challenges for a deeper understanding of specific ion effects in protic and aprotic solvents as well as various additional media. Despite recent interest in solute or interfacial effects, we focus exclusively on the specific properties of ions in bulk electrolyte solutions. Corresponding results show that many mechanisms remain unknown for these simple media, although theoretical, computational, and experimental studies have provided some insights into explaining individual observations. In particular, the importance of local interactions and electronic properties is emphasized, which enabled a more consistent interpretation of specific ion effects over the past years. Despite current insufficient knowledge, we also discuss future challenges in relation to dynamic properties as well as the influence of different concentrations, different solvents, and solute contributions to gain a deeper understanding of specific ion effects for technological applications.
Collapse
Affiliation(s)
- Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.,Digitalization Development Biologicals CMC, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397 Biberach (Riss), Germany
| |
Collapse
|
4
|
Kobayashi T, Smiatek J, Fyta M. Energetic Arguments on the Microstructural Analysis in Ionic Liquids. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takeshi Kobayashi
- Institute for Computational Physics University of Stuttgart Allmandring 3 Stuttgart 70569 Germany
| | - Jens Smiatek
- Institute for Computational Physics University of Stuttgart Allmandring 3 Stuttgart 70569 Germany
| | - Maria Fyta
- Institute for Computational Physics University of Stuttgart Allmandring 3 Stuttgart 70569 Germany
| |
Collapse
|
5
|
Yalcin D, Welsh ID, Matthewman EL, Jun SP, Mckeever-Willis M, Gritcan I, Greaves TL, Weber CC. Structural investigations of molecular solutes within nanostructured ionic liquids. Phys Chem Chem Phys 2020; 22:11593-11608. [PMID: 32400798 DOI: 10.1039/d0cp00783h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ionic liquids (ILs) containing sufficiently long alkyl chains form amphiphilic nanostructures with well-defined polar and non-polar domains. Here we have explored the robustness of these amphiphilic nanostructures to added solutes and gained insight into how the nature of the solute and IL ions affect the partitioning of these solutes within the nanostructured domains of ILs. To achieve this, small angle X-ray scattering (SAXS) investigations were performed and discussed for mixtures of 9 different molecular compounds with 6 different ILs containing imidazolium cations. The amphiphilic nanostructure of ILs persisted to high solute concentrations, over 50 mol% of added solute for most 1-butyl-3-methylimidazolium ILs and above 80 mol% for most 1-decyl-3-methylimidazolium ILs. Solute partitioning within these domains was found to be controlled by the inherent polarity and size of the solute, as well as specific interactions between the solute and IL ions, with SAXS results corroborated with IR spectroscopy and molecular dynamics simulations. Molecular dynamics simulations also revealed the ability to induce π+-π+ stacking between imidazolium cations through the use of these added molecular compounds. Collectively, these results provide scope for the selection of IL ions to rationally influence and control the partitioning behaviour of given solutes within the amphiphilic nanostructure of ILs.
Collapse
Affiliation(s)
- Dilek Yalcin
- School of Science, RMIT University, Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Smiatek J. Theoretical and Computational Insight into Solvent and Specific Ion Effects for Polyelectrolytes: The Importance of Local Molecular Interactions. Molecules 2020; 25:E1661. [PMID: 32260301 PMCID: PMC7180813 DOI: 10.3390/molecules25071661] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
Polyelectrolytes in solution show a broad plethora of interesting effects. In this short review article, we focus on recent theoretical and computational findings regarding specific ion and solvent effects and their impact on the polyelectrolyte behavior. In contrast to standard mean field descriptions, the properties of polyelectrolytes are significantly influenced by crucial interactions with the solvent, co-solvent and ion species. The corresponding experimental and simulation results reveal a significant deviation from theoretical predictions, which also highlights the importance of charge transfer, dispersion and polarization interactions in combination with solvation mechanisms. We discuss recent theoretical and computational findings in addition to novel approaches which help broaden the applicability of simple mean field theories.
Collapse
Affiliation(s)
- Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| |
Collapse
|
7
|
Das S, Singh AK, Biswas DS, Datta A. Dynamics of Preferential Solvation of 5-Aminoquinoline in Hexane–Alcohol Solvent Mixtures. J Phys Chem B 2019; 123:10267-10274. [DOI: 10.1021/acs.jpcb.9b09143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Avinash Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Deep Sekhar Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
8
|
Otero-Mato JM, Lesch V, Montes-Campos H, Smiatek J, Diddens D, Cabeza O, Gallego LJ, Varela LM. Solvation in ionic liquid-water mixtures: A computational study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Zaitsau DH, Emel'yanenko VN, Stange P, Verevkin SP, Ludwig R. Dissecting the Vaporization Enthalpies of Ionic Liquids by Exclusively Experimental Methods: Coulomb Interaction, Hydrogen Bonding, and Dispersion Forces. Angew Chem Int Ed Engl 2019; 58:8589-8592. [DOI: 10.1002/anie.201904813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Dzmitry H. Zaitsau
- Universität RostockInstitut für ChemieAbteilung für Physikalische Chemie Dr.-Lorenz-Weg 2 18059 Rostock Germany
- Department LL&MUniversität Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Vladimir N. Emel'yanenko
- Universität RostockInstitut für ChemieAbteilung für Physikalische Chemie Dr.-Lorenz-Weg 2 18059 Rostock Germany
| | - Peter Stange
- Universität RostockInstitut für ChemieAbteilung für Physikalische Chemie Dr.-Lorenz-Weg 2 18059 Rostock Germany
| | - Sergey P. Verevkin
- Universität RostockInstitut für ChemieAbteilung für Physikalische Chemie Dr.-Lorenz-Weg 2 18059 Rostock Germany
- Department LL&MUniversität Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Ralf Ludwig
- Universität RostockInstitut für ChemieAbteilung für Physikalische Chemie Dr.-Lorenz-Weg 2 18059 Rostock Germany
- Department LL&MUniversität Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
- Leibniz-Institut für Katalyse an der Universität Rostock e.V. Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
10
|
Zaitsau DH, Emel'yanenko VN, Stange P, Verevkin SP, Ludwig R. Zerlegung der Verdampfungsenthalpien ionischer Flüssigkeiten durch rein experimentelle Methoden: Coulomb‐Wechselwirkung, Wasserstoffbrücken und Dispersionskräfte. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dzmitry H. Zaitsau
- Universität RostockInstitut für ChemieAbteilung für Physikalische Chemie Dr.-Lorenz-Weg 2 18059 Rostock Deutschland
- Department LL&MUniversität Rostock Albert-Einstein-Str. 25 18059 Rostock Deutschland
| | - Vladimir N. Emel'yanenko
- Universität RostockInstitut für ChemieAbteilung für Physikalische Chemie Dr.-Lorenz-Weg 2 18059 Rostock Deutschland
| | - Peter Stange
- Universität RostockInstitut für ChemieAbteilung für Physikalische Chemie Dr.-Lorenz-Weg 2 18059 Rostock Deutschland
| | - Sergey P. Verevkin
- Universität RostockInstitut für ChemieAbteilung für Physikalische Chemie Dr.-Lorenz-Weg 2 18059 Rostock Deutschland
- Department LL&MUniversität Rostock Albert-Einstein-Str. 25 18059 Rostock Deutschland
| | - Ralf Ludwig
- Universität RostockInstitut für ChemieAbteilung für Physikalische Chemie Dr.-Lorenz-Weg 2 18059 Rostock Deutschland
- Department LL&MUniversität Rostock Albert-Einstein-Str. 25 18059 Rostock Deutschland
- Leibniz-Institut für Katalyse an der Universität Rostock e.V. Albert-Einstein-Str. 29a 18059 Rostock Deutschland
| |
Collapse
|
11
|
Smiatek J. Enthalpic contributions to solvent–solute and solvent–ion interactions: Electronic perturbation as key to the understanding of molecular attraction. J Chem Phys 2019; 150:174112. [PMID: 31067894 DOI: 10.1063/1.5092567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jens Smiatek
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
- Helmholtz Institut Münster (HI MS–IEK 12): Ionenleiter in Energiespeichern, Forschungszentrum Jülich GmbH, Corrensstrasse 46, D-48149 Münster, Germany
| |
Collapse
|
12
|
Nandy A, Smiatek J. Mixtures of LiTFSI and urea: ideal thermodynamic behavior as key to the formation of deep eutectic solvents? Phys Chem Chem Phys 2019; 21:12279-12287. [PMID: 31139787 DOI: 10.1039/c9cp01440c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We studied the dynamic and structural properties of deep eutectic solvents composed of LiTFSI salts in presence of urea.
Collapse
Affiliation(s)
- Aniruddha Nandy
- Department of Mechanical Engineering
- Indian Institute of Technology
- Kharagpur
- India
- Helmholtz-Institute Münster: Ionics in Energy Storage (HIMS-IEK 12)
| | - Jens Smiatek
- Helmholtz-Institute Münster: Ionics in Energy Storage (HIMS-IEK 12)
- Forschungszentrum Jülich GmbH
- D-48149 Münster
- Germany
- Institute for Computational Physics
| |
Collapse
|
13
|
Properties of Ion Complexes and Their Impact on Charge Transport in Organic Solvent-Based Electrolyte Solutions for Lithium Batteries: Insights from a Theoretical Perspective. BATTERIES-BASEL 2018. [DOI: 10.3390/batteries4040062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Electrolyte formulations in standard lithium ion and lithium metal batteries are complex mixtures of various components. In this article, we review molecular key principles of ion complexes in multicomponent electrolyte solutions in regards of their influence on charge transport mechanisms. We outline basic concepts for the description of ion–solvent and ion–ion interactions, which can be used to rationalize recent experimental and numerical findings concerning modern electrolyte formulations. Furthermore, we discuss benefits and drawbacks of empirical concepts in comparison to molecular theories of solution for a more refined understanding of ion behavior in organic solvents. The outcomes of our discussion provide a rational for beneficial properties of ions, solvent, co-solvent and additive molecules, and highlight possible routes for further improvement of novel electrolyte solutions.
Collapse
|
14
|
Kanduč M, Kim WK, Roa R, Dzubiella J. Selective Molecular Transport in Thermoresponsive Polymer Membranes: Role of Nanoscale Hydration and Fluctuations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Matej Kanduč
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Won Kyu Kim
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Rafael Roa
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Departamento de Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Joachim Dzubiella
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| |
Collapse
|
15
|
Weyman A, Bier M, Holm C, Smiatek J. Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study. J Chem Phys 2018; 148:193824. [DOI: 10.1063/1.5016814] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Alexander Weyman
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
- ETH Zürich, Department of Materials, Leopold-Ruzicka-Weg 4, CH-8093 Zürich, Switzerland
| | - Markus Bier
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Institute for Theoretical Physics IV, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
- Helmholtz Institute Muenster (HIMS-IEK 12), Forschungszentrum Juelich, Corrensstrasse 46, D-48149 Muenster, Germany
| |
Collapse
|
16
|
Oprzeska-Zingrebe EA, Smiatek J. Aqueous ionic liquids in comparison with standard co-solutes : Differences and common principles in their interaction with protein and DNA structures. Biophys Rev 2018; 10:809-824. [PMID: 29611033 DOI: 10.1007/s12551-018-0414-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022] Open
Abstract
Ionic liquids (ILs) are versatile solvents for a broad range of biotechnological applications. Recent experimental and simulation results highlight the potential benefits of dilute ILs in aqueous solution (aqueous ILs) in order to modify protein and DNA structures systematically. In contrast to a limited number of standard co-solutes like urea, ectoine, trimethylamine-N-oxide (TMAO), or guanidinium chloride, the large amount of possible cation and anion combinations in aqueous ILs can be used to develop tailor-made stabilizers or destabilizers for specific purposes. In this review article, we highlight common principles and differences between aqueous ILs and standard co-solutes with a specific focus on their underlying macromolecular stabilization or destabilization behavior. In combination with statistical thermodynamics theories, we present an efficient framework, which is used to classify structure modification effects consistently. The crucial importance of enthalpic and entropic contributions to the free energy change upon IL-assisted macromolecular unfolding in combination with a complex destabilization mechanism is described in detail. A special focus is also set on aqueous IL-DNA interactions, for which experimental and simulation outcomes are summarized and discussed in the context of previous findings.
Collapse
Affiliation(s)
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569, Stuttgart, Germany. .,Helmholtz Institute Münster: Ionics in Energy Storage (HI MS - IEK 12), Forschungszentrum Jülich GmbH, Corrensstrasse 46, 48149, Münster, Germany.
| |
Collapse
|
17
|
Gutiérrez A, Atilhan M, Alcalde R, Trenzado J, Aparicio S. Insights on the mixtures of imidazolium based ionic liquids with molecular solvents. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.167] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Diddens D, Lesch V, Heuer A, Smiatek J. Aqueous ionic liquids and their influence on peptide conformations: denaturation and dehydration mechanisms. Phys Chem Chem Phys 2018; 19:20430-20440. [PMID: 28737791 DOI: 10.1039/c7cp02897k] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Low concentrated aqueous ionic liquids (ILs) and their influence on protein structures have attracted a lot of interest over the last few years. This can be mostly attributed to the fact that aqueous ILs, depending on the ion species involved, can be used as protein protectants or protein denaturants. Atomistic molecular dynamics (MD) simulations are performed in order to study the influence of different aprotic ILs on the properties of a short hairpin peptide. Our results reveal distinct binding and denaturation effects for 1-ethyl-3-methylimidazolium (EMIM) in combination with different anions, namely, chloride (CL), tetrafluoroborate (BF4) and acetate (ACE). The simulation outcomes demonstrate that the studied ILs with larger anions reveal a more pronounced accumulation behavior of the individual ion species around the peptide, which is accomplished by a stronger dehydration effect. We can relate these findings to the implications of the Kirkwood-Buff theory, which provides a thermodynamic explanation for the denaturation strength in terms of the IL accumulation behavior. The results for the spatial distribution functions, the binding energies and the local/bulk partition coefficients are in good agreement with metadynamics simulations in order to determine the energetically most stable peptide conformations. The free energy landscapes indicate a decrease of the denaturation strength in the order EMIM/ACE, EMIM/BF4 and EMIM/CL, which coincides with a decreasing size of the anion species. An analysis of the potential binding energies reveals that this effect is mainly of enthalpic nature.
Collapse
Affiliation(s)
- Diddo Diddens
- Institute of Physical Chemistry, University of Münster, Corrensstrasse 28/30, 48149 Münster, Germany
| | | | | | | |
Collapse
|
19
|
Krishnamoorthy AN, Zeman J, Holm C, Smiatek J. Preferential solvation and ion association properties in aqueous dimethyl sulfoxide solutions. Phys Chem Chem Phys 2018; 18:31312-31322. [PMID: 27824183 DOI: 10.1039/c6cp05909k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We study the solvation and the association properties of ion pairs in aqueous dimethyl sulfoxide (DMSO) solution by atomistic molecular dynamics (MD) simulations. The ion pair is composed of two lithium and a single sulfonated diphenyl sulfone ion whose properties are studied under the influence of different DMSO concentrations. For increasing mole fractions of DMSO, we observe a non-ideal behavior of the solution as indicated by the derivatives of the chemical activity. Our findings are complemented by dielectric spectra, which also verify a complex DMSO-water mixing behavior. In agreement with these results, further simulation outcomes reveal an aqueous homoselective solvation of the ion species which fosters the occurrence of pronounced ion association constants at higher DMSO mole fractions. The consequences of this finding are demonstrated by lower ionic conductivities for increasing concentrations of DMSO.
Collapse
Affiliation(s)
| | - Johannes Zeman
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.
| |
Collapse
|
20
|
Narayanan Kirshnamoorthy A, Oldiges K, Winter M, Heuer A, Cekic-Laskovic I, Holm C, Smiatek J. Electrolyte solvents for high voltage lithium ion batteries: ion correlation and specific anion effects in adiponitrile. Phys Chem Chem Phys 2018; 20:25701-25715. [DOI: 10.1039/c8cp04102d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Combined atomistic molecular dynamics, quantum chemical, and experimental study regarding the properties of two lithium conducting salts in high voltage electrolyte solvent adiponitrile.
Collapse
Affiliation(s)
| | - Kristina Oldiges
- Helmholtz Institute Münster (HI MS): Ionics in Energy Storage
- Forschungszentrum Jülich GmbH
- 48149 Münster
- Germany
| | - Martin Winter
- Helmholtz Institute Münster (HI MS): Ionics in Energy Storage
- Forschungszentrum Jülich GmbH
- 48149 Münster
- Germany
- MEET Battery Research Centre
| | - Andreas Heuer
- Institute of Physical Chemistry
- University of Münster
- 48149 Münster
- Germany
| | - Isidora Cekic-Laskovic
- Helmholtz Institute Münster (HI MS): Ionics in Energy Storage
- Forschungszentrum Jülich GmbH
- 48149 Münster
- Germany
| | - Christian Holm
- Institute for Computational Physics
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Jens Smiatek
- Institute for Computational Physics
- University of Stuttgart
- 70569 Stuttgart
- Germany
- Helmholtz Institute Münster (HI MS): Ionics in Energy Storage
| |
Collapse
|
21
|
Smiatek J. Aqueous ionic liquids and their effects on protein structures: an overview on recent theoretical and experimental results. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:233001. [PMID: 28398214 DOI: 10.1088/1361-648x/aa6c9d] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ionic liquids (ILs) are used in a variety of technological and biological applications. Recent experimental and simulation results reveal the influence of aqueous ionic liquids on the stability of protein and enzyme structures. Depending on different parameters like the concentration and the ion composition, one can observe distinct stabilization or denaturation mechanisms for various ILs. In this review, we summarize the main findings and discuss the implications with regard to molecular theories of solutions and specific ion effects. A preferential binding model is introduced in order to discuss protein-IL effects from a statistical mechanics perspective. The value of the preferential binding coefficient determines the strength of the ion influence and indicates a shift of the chemical equilibrium either to the native or the denatured state of the protein. We highlight the role of water in order to explain the self-association behavior of the IL species and discuss recent experimental and simulation results in the light of the observed binding effects.
Collapse
Affiliation(s)
- Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| |
Collapse
|
22
|
Zeindlhofer V, Khlan D, Bica K, Schröder C. Computational analysis of the solvation of coffee ingredients in aqueous ionic liquid mixtures. RSC Adv 2017; 7:3495-3504. [PMID: 28496974 PMCID: PMC5361174 DOI: 10.1039/c6ra24736a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022] Open
Abstract
In this paper, we investigate the solvation of coffee ingredients including caffeine, gallic acid as representative for phenolic compounds and quercetin as representative for flavonoids in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate [C2mim][OAc] at various concentrations. Due to the anisotropy of the solutes we show that classical Kirkwood-Buff theory is not appropriate to study solvation effects with increasing ionic liquid content. However, excess coordination numbers as well as the mean residence time of solvent molecules at the surface of the solutes can be determined by Voronoi tessellation. Since the volume of the hydration shells is also available by this method, solvation free energies will be discussed as a function of the ionic liquid concentration to yield a physical meaningful picture of solvation for the anisotropic solutes. Hydrogen bonding capabilities of the solutes and their relevance for experimental extraction yields from spent coffee grounds are also discussed.
Collapse
Affiliation(s)
- Veronika Zeindlhofer
- University of Vienna , Faculty of Chemistry , Department of Computational Biological Chemistry , Währingerstraße 19 , 1090 Vienna , Austria . ; Tel: +43 14277 52711
| | - Diana Khlan
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9/163 , 1060 Vienna , Austria
| | - Katharina Bica
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9/163 , 1060 Vienna , Austria
| | - Christian Schröder
- University of Vienna , Faculty of Chemistry , Department of Computational Biological Chemistry , Währingerstraße 19 , 1090 Vienna , Austria . ; Tel: +43 14277 52711
| |
Collapse
|
23
|
Reid JESJ, Gammons RJ, Slattery JM, Walker AJ, Shimizu S. Interactions in Water–Ionic Liquid Mixtures: Comparing Protic and Aprotic Systems. J Phys Chem B 2017; 121:599-609. [DOI: 10.1021/acs.jpcb.6b10562] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Joshua E. S. J. Reid
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
- TWI Ltd., Granta Park, Great Abington, Cambridge, CB21 6AL, U.K
| | - Richard J. Gammons
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - John M. Slattery
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Adam J. Walker
- TWI Ltd., Granta Park, Great Abington, Cambridge, CB21 6AL, U.K
| | - Seishi Shimizu
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
24
|
Keaveney ST, Schaffarczyk McHale KS, Stranger JW, Ganbold B, Price WS, Harper JB. NMR Diffusion Measurements as a Simple Method to Examine Solvent-Solvent and Solvent-Solute Interactions in Mixtures of the Ionic Liquid [Bmim][N(SO2CF3)2] and Acetonitrile. Chemphyschem 2016; 17:3853-3862. [DOI: 10.1002/cphc.201600927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Sinead T. Keaveney
- School of Chemistry; University of New South Wales, UNSW; Sydney NSW 2052 Australia
| | | | - James W. Stranger
- Nanoscale Organisation and Dynamics Group; Western Sydney University; Locked Bag 1797, Penrith NSW 2751 Australia
| | - Batchimeg Ganbold
- Nanoscale Organisation and Dynamics Group; Western Sydney University; Locked Bag 1797, Penrith NSW 2751 Australia
| | - William S. Price
- Nanoscale Organisation and Dynamics Group; Western Sydney University; Locked Bag 1797, Penrith NSW 2751 Australia
| | - Jason B. Harper
- School of Chemistry; University of New South Wales, UNSW; Sydney NSW 2052 Australia
| |
Collapse
|
25
|
Lesch V, Heuer A, Rad BR, Winter M, Smiatek J. Atomistic insights into deep eutectic electrolytes: the influence of urea on the electrolyte salt LiTFSI in view of electrochemical applications. Phys Chem Chem Phys 2016; 18:28403-28408. [DOI: 10.1039/c6cp04217a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the properties of LiTFSI in combination with urea. For specific molar ratios, a deep eutectic electrolyte is formed which is investigatedviaatomistic molecular dynamics simulations.
Collapse
Affiliation(s)
- Volker Lesch
- Helmholtz-Institute Muenster (IEK-12): Ionics in Energy Storage
- Forschungszentrum Juelich
- 48153 Muenster
- Germany
| | - Andreas Heuer
- Helmholtz-Institute Muenster (IEK-12): Ionics in Energy Storage
- Forschungszentrum Juelich
- 48153 Muenster
- Germany
- Institute of Physical Chemistry
| | - Babak R. Rad
- Helmholtz-Institute Muenster (IEK-12): Ionics in Energy Storage
- Forschungszentrum Juelich
- 48153 Muenster
- Germany
| | - Martin Winter
- Helmholtz-Institute Muenster (IEK-12): Ionics in Energy Storage
- Forschungszentrum Juelich
- 48153 Muenster
- Germany
- MEET Battery Research Centre
| | - Jens Smiatek
- Institute for Computational Physics
- University of Stuttgart
- 70569 Stuttgart
- Germany
| |
Collapse
|