1
|
Orlando T, Weimer GH, Salbego PRDS, Martinez-Cuezva A, Berna J, Martins MAP. Formation and Stability of Benzylic Amide [2]- and [3]Rotaxanes: An Intercomponent Interactions Study. Chemistry 2024:e202403276. [PMID: 39312443 DOI: 10.1002/chem.202403276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
One of the most recent focuses in supramolecular chemistry is developing molecules designed to exhibit programmable properties at the molecular level. Rotaxanes, which function as molecular machines with movements controlled by external stimuli, are prime candidates for this purpose. However, the controlled synthesis of rotaxanes, especially amide-benzylic rotaxanes with more than two components, remains an area ripe for exploration. In this study, we aim to elucidate the formation of amide-benzylic [3]rotaxanes using a thread that includes a conventional succinamide station and an innovative triazole-carbonyl station. Including the triazole-carbonyl station introduces new perspectives into the chemistry of rotaxanes, influencing their conformation and dynamics. The synthesis of two-station rotaxanes with varying stoppers demonstrated that the macrocycle consistently occupies the succinamide station, providing greater stability as evidenced by NMR and SC-XRD analyses. The presence of a triazole-carbonyl station facilitated the formation of a second macrocycle exclusively when a secondary amide was employed as the stopper group, presumably due to decreased steric hindrance. Moreover, the second macrocycle directly forms at the triazole-carbonyl station. This investigation reveals that slight modifications in the thread structure can dramatically impact the formation, stability, and interactions between components of rotaxanes.
Collapse
Affiliation(s)
- Tainára Orlando
- Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná (UTFPR), 85884-000, Medianeira, Paraná, Brasil
| | - Gustavo Henrique Weimer
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, Rio Grande do Sul, Brasil
| | - Paulo Roberto Dos Santos Salbego
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Engenharia e Tecnologia Ambiental (DETA), Universidade Federal de Santa Maria (UFSM), 98400-000, Frederico Westphalen, Rio Grande do Sul, Brasil
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain
| | - Marcos Antonio Pinto Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, Rio Grande do Sul, Brasil
| |
Collapse
|
2
|
Saura-Sanmartin A, Pastor A, Martinez-Cuezva A, Berna J. Maximizing the [ c2]daisy chain to lasso ratio through competitive self-templating clipping reactions. Chem Commun (Camb) 2021; 58:290-293. [PMID: 34881747 DOI: 10.1039/d1cc05942d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Self-templating two-component coupling reactions allowed the isolation of two threaded products with different molecular sizes: a lasso-type [1]rotaxane and a [c2]daisy chain rotaxane. Their distribution in the final reaction mixture varies as a factor of the concentration of the reactants. Through this methodology we obtained a large 84-membered cyclic multistation [2]rotaxane.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Aurelia Pastor
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
3
|
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Nakamura T, Mori Y, Naito M, Okuma Y, Miyagawa S, Takaya H, Kawasaki T, Tokunaga Y. Rotaxanes comprising cyclic phenylenedioxydiacetamides and secondary mono- and bis-dialkylammonium ions: effect of macrocyclic ring size on pseudorotaxane formation. Org Chem Front 2020. [DOI: 10.1039/c9qo01359h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[2]Rotaxanes, stabilized through multiple and cooperative hydrogen bonding system, were synthesized from dialkylammonium ions and macrocycle possessing two phenylenedioxydiacetamide units and appropriate spacers.
Collapse
Affiliation(s)
- Takanori Nakamura
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Yuka Mori
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Masaya Naito
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Yukari Okuma
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Hikaru Takaya
- International Research Center for Elements Science
- Institute for Chemical Research
- Kyoto University
- Uji 611-0011
- Japan
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| |
Collapse
|
5
|
Zheng L, Cui J, Jiang W. Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxane‐Based Molecular Shuttles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910318] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Li‐Shuo Zheng
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Jie‐Shun Cui
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
6
|
Zheng L, Cui J, Jiang W. Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxane‐Based Molecular Shuttles. Angew Chem Int Ed Engl 2019; 58:15136-15141. [DOI: 10.1002/anie.201910318] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Li‐Shuo Zheng
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Jie‐Shun Cui
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
7
|
Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem. Proc Natl Acad Sci U S A 2018; 115:9391-9396. [PMID: 29735677 DOI: 10.1073/pnas.1719539115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.
Collapse
|
8
|
Evans NH, Akien GR. Rapid and simultaneous synthesis of a hydrogen bond templated [3]rotaxane and its related [2]rotaxane molecular shuttle. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1400031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Modular construction of pyrido[24]crown-8-based templates in the self-assembly of cross-linked [n]catenanes. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Martinez-Cuezva A, Saura-Sanmartin A, Nicolas-Garcia T, Navarro C, Orenes RA, Alajarin M, Berna J. Photoswitchable interlocked thiodiglycolamide as a cocatalyst of a chalcogeno-Baylis-Hillman reaction. Chem Sci 2017; 8:3775-3780. [PMID: 28580109 PMCID: PMC5436546 DOI: 10.1039/c7sc00724h] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/07/2017] [Indexed: 11/24/2022] Open
Abstract
En route to a photoswitchable interlocked catalyst we have proved the ability of thiodiglycolamide to act as a template in the formation of hydrogen-bonded [2]rotaxanes. X-ray diffraction studies reveal the shielding of the sulfide atom by the macrocycle. A series of molecular shuttles are described as having an isomerizable fumaramide and thiodiglycolamide binding sites for controlling the relative ring position at will. By employing these systems as photoregulated catalysts, the TiCl4-mediated chalcogeno-Morita-Baylis-Hillman reaction is tested. In the presence of the maleamide shuttle, in which the sulfide function is encapsulated by the macrocycle, a complete loss in control of the geometry of the produced aldol is observed. The E-aldol adduct is predominantly obtained when the photoisomerized fumaramide shuttle, in which the sulfide function is exposed, is used.
Collapse
Affiliation(s)
- Alberto Martinez-Cuezva
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| | - Adrian Saura-Sanmartin
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| | - Tomas Nicolas-Garcia
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| | - Cristian Navarro
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| | | | - Mateo Alajarin
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| | - Jose Berna
- Departamento de Química Orgánica , Facultad de Química , Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , E-30100 , Murcia , Spain .
| |
Collapse
|