1
|
Taura D, Minami A, Mamiya F, Ousaka N, Itami K, Yashima E. Separation of enantiomers of chiral fullerene derivatives through enantioselective encapsulation within an adaptable helical cavity of syndiotactic poly(methyl methacrylate) with helicity memory. Chirality 2024; 36:e23663. [PMID: 38561600 DOI: 10.1002/chir.23663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Optically active left (M)- and right (P)-handed helical syndiotactic poly(methyl methacrylate)s (M- and P-st-PMMAs) with a helicity memory enantioselectively encapsulated the racemic C60 derivatives, such as 3,4-fulleroproline tert-butyl ester (rac-1) and tetraallylated C60 (rac-2), as well as the C60-bound racemic 310-helical peptides (rac-3) within their helical cavities to form peapod-like inclusion complexes and a unique "helix-in-helix" superstructure, respectively. The enantiomeric excess (ee) and separation factor (enantioselectivity) (α) of the analyte 1 (ee = 23%-25% and α = 2.35-2.50) encapsulated within the helical cavities of the M- and P-st-PMMAs were higher than those of the analytes 2 and 3 (ee = 4.3%-6.0% and α = 1.28-1.50). The optically pure (S)- and (R)-1 were found to more efficiently induce an excess one-handed helical conformation in the st-PMMA backbone than the optically pure (S)- and (R)-1-phenylethylamine, resulting in intense mirror-image vibrational circular dichroism (VCD) spectra in the PMMA IR regions. The excess one-handed helices induced in the st-PMMAs complexed with (S)- and (R)-1 were memorized after replacement with the achiral C60, and the complexes exhibited induced electric CDs in the achiral C60 chromophore regions.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Department of Applied Chemistry, Faculty of Science and Technology, Meijo University, Nagoya, Japan
| | - Akiko Minami
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Fumihiko Mamiya
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Naoki Ousaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Ðorđević L, Casimiro L, Demitri N, Baroncini M, Silvi S, Arcudi F, Credi A, Prato M. Light‐Controlled Regioselective Synthesis of Fullerene Bis‐Adducts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luka Ðorđević
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
- Present address: Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Present address: Simpson Querrey Institute Northwestern University 303 E. Superior Chicago IL 60611 USA
| | - Lorenzo Casimiro
- CLAN—Center for Light Activated Nanostructures Università di Bologna and Consiglio Nazionale delle Ricerche via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40127 Bologna Italy
- Present address: Supramolecular and Macromolecular Photochemistry and Photophysics ENS Paris-Saclay CNRS Université Paris-Saclay 61 Avenue du Président Wilson 94235 Cachan France
| | - Nicola Demitri
- Elettra—Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park 34149 Basovizza Italy
| | - Massimo Baroncini
- CLAN—Center for Light Activated Nanostructures Università di Bologna and Consiglio Nazionale delle Ricerche via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN—Center for Light Activated Nanostructures Università di Bologna and Consiglio Nazionale delle Ricerche via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica “G. Ciamician” Università di Bologna via Selmi 2 40127 Bologna Italy
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
- Present address: Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Alberto Credi
- CLAN—Center for Light Activated Nanostructures Università di Bologna and Consiglio Nazionale delle Ricerche via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste University of Trieste via Licio Giorgieri 1 34127 Trieste Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia San Sebastián Spain
- Basque Foundation for Science Ikerbasque Bilbao 48013 Spain
| |
Collapse
|
3
|
Garrido M, Gualandi L, Di Noja S, Filippini G, Bosi S, Prato M. Synthesis and applications of amino-functionalized carbon nanomaterials. Chem Commun (Camb) 2020; 56:12698-12716. [PMID: 33016290 DOI: 10.1039/d0cc05316c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon-based nanomaterials (CNMs) have attracted considerable attention in the scientific community both from a scientific and an industrial point of view. Fullerenes, carbon nanotubes (CNTs), graphene and carbon dots (CDs) are the most popular forms and continue to be widely studied. However, the general poor solubility of many of these materials in most common solvents and their strong tendency to aggregate remains a major obstacle in practical applications. To solve these problems, organic chemistry offers formidable help, through the exploitation of tailored approaches, especially when aiming at the integration of nanostructures in biological systems. According to our experience with carbon-based nanostructures, the introduction of amino groups is one of the best trade-offs for the preparation of functionalized nanomaterials. Indeed, amino groups are well-known for enhancing the dispersion, solubilization, and processability of materials, in particular of CNMs. Amino groups are characterized by basicity, nucleophilicity, and formation of hydrogen or halogen bonding. All these features unlock new strategies for the interaction between nanomaterials and other molecules. This integration can occur either through covalent bonds (e.g., via amide coupling) or in a supramolecular fashion. In the present Feature Article, the attention will be focused through selected examples of our approach to the synthetic pathways necessary for the introduction of amino groups in CNMs and the subsequent preparation of highly engineered ad hoc nanostructures for practical applications.
Collapse
Affiliation(s)
- Marina Garrido
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Lorenzo Gualandi
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Simone Di Noja
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy. and Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia San Sebastián, Spain and Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
| |
Collapse
|
4
|
Ðorđević L, Casimiro L, Demitri N, Baroncini M, Silvi S, Arcudi F, Credi A, Prato M. Light-Controlled Regioselective Synthesis of Fullerene Bis-Adducts. Angew Chem Int Ed Engl 2020; 60:313-320. [PMID: 32722869 DOI: 10.1002/anie.202009235] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Indexed: 12/21/2022]
Abstract
Multi-functionalization and isomer-purity of fullerenes are crucial tasks for the development of their chemistry in various fields. In both current main approaches-tether-directed covalent functionalization and supramolecular masks-the control of regioselectivity requires multi-step synthetic procedures to prepare the desired tether or mask. Herein, we describe light-responsive tethers, containing an azobenzene photoswitch and two malonate groups, in the double cyclopropanation of [60]fullerene. The formation of the bis-adducts and their spectroscopic and photochemical properties, as well as the effect of azobenzene photoswitching on the regiochemistry of the bis-addition, have been studied. The behavior of the tethers depends on the geometry of the connection between the photoactive core and the malonate moieties. One tether lead to a strikingly different adduct distribution for the E and Z isomers, indicating that the covalent bis-functionalization of C60 can be controlled by light.
Collapse
Affiliation(s)
- Luka Ðorđević
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy.,Present address: Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Present address: Simpson Querrey Institute, Northwestern University, 303 E. Superior, Chicago, IL, 60611, USA
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated Nanostructures, Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40127, Bologna, Italy.,Present address: Supramolecular and Macromolecular Photochemistry and Photophysics, ENS Paris-Saclay, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149, Basovizza, Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures, Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, viale Fanin 44, 40127, Bologna, Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures, Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40127, Bologna, Italy
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy.,Present address: Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures, Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, viale del Risorgimento 4, 40136, Bologna, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences & INSTM, UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy.,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia San Sebastián, Spain.,Basque Foundation for Science, Ikerbasque, Bilbao, 48013, Spain
| |
Collapse
|
6
|
Remote electrochemical modulation of pK a in a rotaxane by co-conformational allostery. Proc Natl Acad Sci U S A 2017; 115:9385-9390. [PMID: 29255033 DOI: 10.1073/pnas.1712783115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allosteric control, one of Nature's most effective ways to regulate functions in biomolecular machinery, involves the transfer of information between distant sites. The mechanistic details of such a transfer are still an object of intensive investigation and debate, and the idea that intramolecular communication could be enabled by dynamic processes is gaining attention as a complement to traditional explanations. Mechanically interlocked molecules, owing to the particular kind of connection between their components and the resulting dynamic behavior, are attractive systems to investigate allosteric mechanisms and exploit them to develop functionalities with artificial species. We show that the pKa of an ammonium site located on the axle component of a [2]rotaxane can be reversibly modulated by changing the affinity of a remote recognition site for the interlocked crown ether ring through electrochemical stimulation. The use of a reversible ternary redox switch enables us to set the pKa to three different values, encompassing more than seven units. Our results demonstrate that in the axle the two sites do not communicate, and that in the rotaxane the transfer of information between them is made possible by the shuttling of the ring, that is, by a dynamic intramolecular process. The investigated coupling of electron- and proton-transfer reactions is reminiscent of the operation of the protein complex I of the respiratory chain.
Collapse
|